【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)若直線與曲線交于兩點,且設定點,求的值.

【答案】(1)普通方程為,C直角坐標方程為(2)

【解析】

1)消去參數(shù)t即可得直線l普通方程,利用,化簡整理可得曲線的直角坐標方程;(2)根據(jù)直線過的定點設直線l參數(shù)方程,把直線的參數(shù)方程代入曲線C的方程,化為關(guān)于t的一元二次方程后利用參數(shù)t的幾何意義可得結(jié)論.

(1)由直線的參數(shù)方程消去,得普通方程為.

等價于,

,代入上式,得曲線的直角坐標方程為,

.

(2)點在直線上,所以直線的參數(shù)方程可以寫為為參數(shù)),

將上式代入,得.

,對應的參數(shù)分別為,,則,

所以

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓的標準方程;

(2)若,為橢圓上不同的兩點,且以為直徑的圓過坐標原點.是否存在定圓與動直線相切?若存在,求出該圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是邊長為的正方形,的中點,以為折痕把折起,使點到達點的位置,且二面角為直二面角,連結(jié).

(1)記平面與平面相較于,在圖中作出,并說明畫法;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,,的中點.

(1)求證:平面;

(2)若點在線段上,且滿足,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位為了響應疫情期間有序復工復產(chǎn)的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在員工甲不是第一個檢測,員工乙不是最后一個檢測的條件下,員工丙第一個檢測的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)有甲、乙兩個研發(fā)小組,他們研究新產(chǎn)品成功的概率分別為,現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設甲、乙兩組的研發(fā)相互獨立.

1)求恰好有一種新產(chǎn)品研發(fā)成功的概率;

2)若新產(chǎn)品A研發(fā)成功,預計企業(yè)可獲得利潤120萬元,不成功則會虧損50萬元;若新產(chǎn)品B研發(fā)成功,企業(yè)可獲得利潤100萬元,不成功則會虧損40萬元,求該企業(yè)獲利ξ萬元的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新高考改革后,國家只統(tǒng)一考試數(shù)學和語文,英語學科改為參加等級考試,每年考兩次,分別放在每個學年的上、下學期,物理、化學、生物、地理、歷史、政治這六科則以該省的省會考成績?yōu)闇?/span>.考生從中選擇三科成績,參加大學相關(guān)院系的錄取.

1)若英語等級考試成績有一次為優(yōu),即可達到某211院校的錄取要求.假設某個學生參加每次等級考試事件是獨立的,且該生英語等級考試成績?yōu)閮?yōu)的概率都是,求該生在高二上學期的英語等級考試成績才為優(yōu)的概率;

2)據(jù)預測,要想報考該211院校的相關(guān)院系,省會考的成績至少在90分以上,才有可能被該校錄取.假設該生在省會考六科的成績,考到90分以上概率都是,設該生在省會考時考到90分以上的科目數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市一調(diào)查機構(gòu)針對該市市場占有率最高的甲、乙兩家網(wǎng)絡外賣企業(yè)以下簡稱外賣甲,外賣乙的經(jīng)營情況進行了調(diào)查,調(diào)查結(jié)果如表:

日期

第1天

第2天

第3天

第4天

第5天

外賣甲日接單x(百單

5

2

9

8

11

外賣乙日接單y(百單

2.2

2.3

10

5

15

(Ⅰ)據(jù)統(tǒng)計表明,yx之間具有線性相關(guān)關(guān)系.經(jīng)計算求得yx之間的回歸方程為,假定每單外賣業(yè)務企業(yè)平均能獲純利潤3元,試預測當外賣乙日接單量不低于2500單時,外賣甲所獲取的日純利潤的大致范圍;(x值精確到0.01)

(Ⅱ)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經(jīng)營狀況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列滿足.

(1)求的通項公式;

(2)設等比數(shù)列滿足,問: 與數(shù)列的第幾項相等?

查看答案和解析>>

同步練習冊答案