【題目】如圖,四邊形是邊長為的正方形,為的中點,以為折痕把折起,使點到達點的位置,且二面角為直二面角,連結.
(1)記平面與平面相較于,在圖中作出,并說明畫法;
(2)求直線與平面所成角的正弦值.
【答案】(1)詳見解析(2)
【解析】
(1)只需延長交于點,連結,即可滿足是平面與平面的交線;
(2)先作用交于,得到兩兩垂直,以點為坐標原點,建立空間直角坐標系,求出平面的法向量,和直線的方向向量,由向量的夾角公式結合線面角的范圍,即可求出結果.
解:(1)延長交于點,連接,則直線即為.
(2)過作交于,則,所以是二面角的平面角的補角,因為二面角為直二面角,從而,即.
以為坐標原點,分別以為軸,軸,軸正方向建立空間直角坐標系,如圖,在中,,,所以,從而,所以,,又,,則,,,,,
所以,,,
設平面的法向量為,則
取,,,,
所以,
設直線與平面所成角為,則,
所以直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個六邊形點陣,它的中心是1個點(第1層),第2層每邊有2個點, 第3層每邊有3個點,…,依此類推,若一個六邊形點陣共有217個點,那么它的層數(shù)為( )
A.10B.9C.8D.7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某火鍋店為了解氣溫對營業(yè)額的影響,隨機記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
(1)求y關于x的回歸方程;
(2)判定y與x之間是正相關還是負相關;若該地1月份某天的最低氣溫為6℃,用所求回歸方程預測該店當日的營業(yè)額;
附:①;.
②參考數(shù)據(jù)如下:
i | ||||
1 | 2 | 12 | 4 | 24 |
2 | 5 | 10 | 25 | 50 |
3 | 8 | 8 | 64 | 64 |
4 | 9 | 8 | 81 | 72 |
5 | 11 | 7 | 121 | 77 |
35 | 45 | 295 | 287 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標記錄于下表中:
3 | 2 | 4 | ||
0 | 4 |
(Ⅰ)求的標準方程;
(Ⅱ)請問是否存在直線滿足條件:①過的焦點;②與交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市對創(chuàng)“市級示范性學校”的甲、乙兩所學校進行復查驗收,對辦學的社會滿意度一項評價隨機訪問了20為市民,這20位市民對這兩所學校的評分(評分越高表明市民的評價越好)的數(shù)據(jù)如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績分成了四個等級:成績在區(qū)間的為等,在區(qū)間的為等,在區(qū)間的為等,在區(qū)間為等.
(1)請用莖葉圖表示上面的數(shù)據(jù),并通過觀察莖葉圖,對兩所學校辦學的社會滿意度進行比較,寫出兩個統(tǒng)計結論;
(2)估計哪所學校的市民的評分等級為級或級的概率大,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)若直線與曲線交于兩點,且設定點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當a>0時,求函數(shù)f(x)的單調區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com