【題目】已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
3 | 2 | 4 | ||
0 | 4 |
(Ⅰ)求的標(biāo)準(zhǔn)方程;
(Ⅱ)請(qǐng)問(wèn)是否存在直線滿足條件:①過(guò)的焦點(diǎn);②與交不同兩點(diǎn)且滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.
【答案】(Ⅰ),:;(Ⅱ) 或
【解析】
(Ⅰ)設(shè)拋物線,則有,據(jù)此驗(yàn)證個(gè)點(diǎn)知(3,)、(4,4)在拋物線上,易求
設(shè):,把點(diǎn)(2,0)(,)代入得:
解得
∴方程為
(Ⅱ)假設(shè)存在這樣的直線過(guò)拋物線焦點(diǎn),設(shè)直線的方程為兩交點(diǎn)坐標(biāo)為,
由消去,得
∴①
②
由,即,得
將①②代入(*)式,得,解得
所以假設(shè)成立,即存在直線滿足條件,且的方程為:或
法二:容易驗(yàn)證直線的斜率不存在時(shí),不滿足題意;
當(dāng)直線斜率存在時(shí),假設(shè)存在直線過(guò)拋物線焦點(diǎn),設(shè)其方程為,與的交點(diǎn)坐標(biāo)為
由消掉,得,
于是,①
即②
由,即,得
將①、②代入(*)式,得,解得;
所以存在直線滿足條件,且的方程為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線,的直角坐標(biāo)方程;
(2)判斷曲線,是否相交,若相交,請(qǐng)求出交點(diǎn)間的距離;若不相交,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,,,為的中點(diǎn).
(1)證明:;
(2)若,點(diǎn)在平面的射影在上,且與平面所成角的正弦值為,求三棱柱的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是邊長(zhǎng)為的正方形,為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且二面角為直二面角,連結(jié).
(1)記平面與平面相較于,在圖中作出,并說(shuō)明畫(huà)法;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形所在平面與半圓弧所在平面垂直,是上異于,的點(diǎn).
(1)證明:平面平面;
(2)在線段上是否存在點(diǎn),使得平面?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位為了響應(yīng)疫情期間有序復(fù)工復(fù)產(chǎn)的號(hào)召,組織從疫區(qū)回來(lái)的甲、乙、丙、丁4名員工進(jìn)行核酸檢測(cè),現(xiàn)采用抽簽法決定檢測(cè)順序,在“員工甲不是第一個(gè)檢測(cè),員工乙不是最后一個(gè)檢測(cè)”的條件下,員工丙第一個(gè)檢測(cè)的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列選項(xiàng)中,說(shuō)法正確的是( )
A.命題“,”的否定為“,”;
B.命題“在中,,則”的逆否命題為真命題;
C.已知、m是兩條不同的直線,是個(gè)平面,若,則;
D.已知定義在R上的函數(shù),則“為奇函數(shù)”是“”的充分必要條件.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com