【題目】已知函數(shù).
(1)當時,判斷函數(shù)的單調(diào)性;
(2)當有兩個極值點時,求a的取值范圍,并證明的極大值大于2.
【答案】(1)為(0,+∞)上的減函數(shù).(2)見解析
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),法1:結(jié)合二次函數(shù)的性質(zhì)判斷導(dǎo)函數(shù)的符號,求出函數(shù)的單調(diào)性即可;法2:令h(x)=(-x2+3x-3)ex-a,根據(jù)函數(shù)的單調(diào)性求出h(x)的最大值,判斷即可;(2)令h(x)=(-x2+3x-3)ex-a,求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性得到h(x)=0有兩不等實數(shù)根x1,x2(x1<x2),求出a的范圍,求出f(x)的極大值判斷即可.
(1)由題知.
方法1:由于,,,
又,所以,從而,
于是為(0,+∞)上的減函數(shù).
方法2:令,則,
當時,,為增函數(shù);當時,,為減函數(shù).
則.由于,所以,
于是為(0,+∞)上的減函數(shù).
(2)令,則,
當時,,為增函數(shù);當時,, 為減函數(shù).
當x趨近于時, 趨近于,
由于有兩個極值點,所以有兩不等實根,即有兩不等實數(shù)根().
則有解得.可知,
又,則,
當 時,,單調(diào)遞減;當 時,,單調(diào)遞增;當 時,,單調(diào)遞減.
則函數(shù)在時取極小值,在時取極大值.
即,
而,即,
所以極大值.當時,恒成立,
故為上的減函數(shù),所以
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓M:(a>b>0)的離心率為,左右頂點分別為A,B,線段AB的長為4.P在橢圓M上且位于第一象限,過點A,B分別作l1⊥PA,l2⊥PB,直線l1,l2交于點C.
(1)若點C的橫坐標為﹣1,求P點的坐標;
(2)直線l1與橢圓M的另一交點為Q,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是邊長為的正方形,為的中點,以為折痕把折起,使點到達點的位置,且二面角為直二面角,連結(jié).
(1)記平面與平面相較于,在圖中作出,并說明畫法;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位為了響應(yīng)疫情期間有序復(fù)工復(fù)產(chǎn)的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在“員工甲不是第一個檢測,員工乙不是最后一個檢測”的條件下,員工丙第一個檢測的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新高考改革后,國家只統(tǒng)一考試數(shù)學和語文,英語學科改為參加等級考試,每年考兩次,分別放在每個學年的上、下學期,物理、化學、生物、地理、歷史、政治這六科則以該省的省會考成績?yōu)闇?/span>.考生從中選擇三科成績,參加大學相關(guān)院系的錄取.
(1)若英語等級考試成績有一次為優(yōu),即可達到某211院校的錄取要求.假設(shè)某個學生參加每次等級考試事件是獨立的,且該生英語等級考試成績?yōu)閮?yōu)的概率都是,求該生在高二上學期的英語等級考試成績才為優(yōu)的概率;
(2)據(jù)預(yù)測,要想報考該211院校的相關(guān)院系,省會考的成績至少在90分以上,才有可能被該校錄取.假設(shè)該生在省會考六科的成績,考到90分以上概率都是,設(shè)該生在省會考時考到90分以上的科目數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了名學生,將他們的比賽成績(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于分”,估計的概率;
(3)在抽取的名學生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | |||
女生 | |||
合計 |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com