精英家教網 > 高中數學 > 題目詳情

【題目】已知F為橢圓C的左焦點,過F作兩條互相垂直的直線,直線C交于A,B兩點,直線C交于D,E兩點,則四邊形ADBE的面積最小值為(

A.4B.C.D.

【答案】C

【解析】

先計算直線斜率為0時或直線斜率為0時對應的四邊形的面積,再設斜率為k,利用弦長公式計算,,得出四邊形的面積關于k的函數,利用換元法求出面積的最小值從而得出結論.

橢圓的左焦點為

1)當直線斜率為0時,直線的方程為,

或當直線斜率為0時,直線的方程為,

代入橢圓方程得

四邊形ADBE的面積為

2)當直線有斜率且斜率不為0時,設直線的方程為,直線的方程為

聯立方程組,消元得:,

,,則,,

替換k可得,

四邊形ADBE的面積為,

,則,

時,S取得最小值

綜上,四邊形ABDE的面積的最小值為

故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】到2020年,我國將全面建立起新的高考制度,新高考采用模式,其中語文、數學、英語三科為必考科目,滿分各150分,另外考生還要依據想考取的高校及專業(yè)的要求,結合自己的興趣、愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學校采用分層抽樣的方法從高一年級1000名(其中男生550名,女生450名)學生中抽取了名學生進行調查.

(1)已知抽取的名學生中有女生45名,求的值及抽取的男生的人數.

(2)該校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目,且只能選擇一個科目),得到如下列聯表.

選擇“物理”

選擇“地理”

總計

男生

10

女生

25

總計

(i)請將列聯表補充完整,并判斷是否有以上的把握認為選擇科目與性別有關系.

(ii)在抽取的選擇“地理”的學生中按性別分層抽樣抽取6名,再從這6名學生中抽取2名,求這2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校在2016年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號

分組

頻數

頻率

1

5

2

n

3

30

p

4

20

5

10

合計

100

1)求頻率分布表中n,p的值,完善頻率分布直方圖并估計該組數據的中位數保留l位小數;

2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學生進入第二輪面試,學校決定從這6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有1名學生被甲考官面試的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:實數m滿足使方程1,其中a0為雙曲線:命題q:實數m滿足

1)若a1pq為真,求實數m的取值范圍;

2)若¬p是¬q的充分不必要條件,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓M經過點F1,0),且與直線lx=﹣1相切,動圓圓心M的軌跡記為曲線C

1)求曲線C的軌跡方程

2)若點Py軸左側(不含y軸)一點,曲線C上存在不同的兩點A、B,滿足PA,PB的中點都在曲線C上,設AB中點為E,證明:PE垂直于y軸.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為研究學生語言學科的學習情況,現對高二200名學生英語和語文某次考試成績進行抽樣分析. 將200名學生編號為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學生,將10名學生的兩科成績(單位:分)繪成折線圖如下:

(Ⅰ)若第一段抽取的學生編號是006,寫出第五段抽取的學生編號;

(Ⅱ)在這兩科成績差超過20分的學生中隨機抽取2人進行訪談,求2人成績均是語文成績高于英語成績的概率;

(Ⅲ)根據折線圖,比較該校高二年級學生的語文和英語兩科成績,寫出你的結論和理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數 部分圖象如圖所示.

(1)求的最小正周期及解析式;

(2)設,求函數在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線y22pxp0)的焦點為F,點A2y0)為拋物線上一點,且|AF|4

1)求拋物線的方程;

2)直線lyx+m與拋物線交于不同兩點P,Q,若,其中O為坐標原點,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(題文)如圖,長方形材料中,已知.點為材料內部一點,,,且,. 現要在長方形材料中裁剪出四邊形材料,滿足,點、分別在邊上.

(1)設,試將四邊形材料的面積表示為的函數,并指明的取值范圍;

(2)試確定點上的位置,使得四邊形材料的面積最小,并求出其最小值.

查看答案和解析>>

同步練習冊答案