【題目】如圖,在正方體ABCDA1B1C1D1中,M,M1分別是棱ADA1D1的中點(diǎn).

(1)求證:四邊形BB1M1M為平行四邊形;

(2)求證:∠BMC=∠B1M1C1

【答案】(1)證明詳見解析;(2)證明詳見解析.

【解析】

(1)利用正方體的性質(zhì),根據(jù)平行四邊形的定義與性質(zhì)證明即可;(2)根據(jù)正方體的性質(zhì)以及平行四邊形的性質(zhì)可證明,從而可得結(jié)果.

(1)在正方形ADD1A1中,MM1分別為AD、A1D1的中點(diǎn),

MM1AA1MM1=AA1

AA1BB1,AA1=BB1,

MM1BB1,且MM1BB1,

四邊形BB1M1M為平行四邊形.

(2)法一:由(1)知四邊形BB1M1M為平行四邊形,

B1M1BM.同理可得四邊形CC1M1M為平行四邊形,

C1M1CM

由平面幾何知識(shí)可知,BMCB1M1C1都是銳角.

∴∠BMC=∠B1M1C1

法二:由(1)知四邊形BB1M1M為平行四邊形,

B1M1BM

同理可得四邊形CC1M1M為平行四邊形,

C1M1CM

B1C1BC,∴△BCM≌△B1C1M1

∴∠BMC=∠B1M1C1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體的各棱長均為2,、分別為棱、、的中點(diǎn),以為圓心、1為半徑,分別在面、面內(nèi)作弧,并將兩弧各分成五等份,分點(diǎn)順次為、、、以及、、、、、.一只甲蟲欲從點(diǎn)出發(fā),沿四面體表面爬行至點(diǎn),則其爬行的最短距離為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給圖中A,B,C,DE,F六個(gè)區(qū)域進(jìn)行染色,每個(gè)區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的方程為

1)求過點(diǎn)且與圓相切的直線的方程;

2)直線過點(diǎn),且與圓交于、兩點(diǎn),若,求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , .

(1)證明:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組由學(xué)生和教師組成,人員構(gòu)成同時(shí)滿足以下三個(gè)條件:①男生人數(shù)多于女生人數(shù);②女生人數(shù)多于教師人數(shù);③教師人數(shù)的兩倍多于男生人數(shù).問:

1)若教師人數(shù)為4,則女生人數(shù)的最大值為多少?

2)該小組人數(shù)的最小值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修:坐標(biāo)系與參數(shù)方程選講.

在平面直角坐標(biāo)系中,曲線為參數(shù),實(shí)數(shù)),曲線

為參數(shù),實(shí)數(shù)). 在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,射線交于兩點(diǎn),與交于兩點(diǎn). 當(dāng)時(shí), ;當(dāng)時(shí), .

(1)求的值; (2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓.

1)若直線過點(diǎn)且到圓心的距離為,求直線的方程;

2)設(shè)過點(diǎn)的直線與圓交于兩點(diǎn)(的斜率為負(fù)),當(dāng)時(shí),求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了考核甲,乙兩部門的工作情況,隨機(jī)訪問了50位市民,根據(jù)這50位市民對(duì)這兩部門的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越高),繪制莖葉圖如下:

1)分別估計(jì)該市的市民對(duì)甲,乙兩部門評(píng)分的中位數(shù);

2)分別估計(jì)該市的市民對(duì)甲,乙兩部門的評(píng)分高于90的概率;

3)根據(jù)莖葉圖分析該市的市民對(duì)甲,乙兩部門的評(píng)價(jià).

查看答案和解析>>

同步練習(xí)冊(cè)答案