【題目】已知函數(shù).
(1)若,求函數(shù)的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)時(shí), 取極大值;當(dāng)時(shí), 取極小值;(2)實(shí)數(shù)的取值范圍是。
【解析】試題分析:(1)函數(shù)求導(dǎo)得,討論導(dǎo)數(shù)的單調(diào)性即可得極值;
(2)函數(shù)求導(dǎo)得,討論, , 和時(shí)函數(shù)的單調(diào)性及最值即可下結(jié)論.
試題解析:
(1)函數(shù)定義域?yàn)?/span>, .
,解得, ,
列表:
極大值 | 極小值 |
所以時(shí), 取極大值;當(dāng)時(shí), 取極小值.
(2),
當(dāng)時(shí),易知函數(shù)只有一個(gè)零點(diǎn),不符合題意;
當(dāng)時(shí),在上, , 單調(diào)遞減;
在上, , 單調(diào)遞增;
,且, →, →,
所以函數(shù)有兩個(gè)零點(diǎn).
當(dāng)時(shí),在和上, , 單調(diào)遞增;在上, 單調(diào)遞減;
,函數(shù)至多有一個(gè)零點(diǎn),不符合題意.
當(dāng)時(shí),在和上, 單調(diào)遞增;在上, 單調(diào)遞減;
,函數(shù)至多有一個(gè)零點(diǎn),不符合題意.
綜上:實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐,側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形, 為棱上的動(dòng)點(diǎn),且.
(I)求證: 為直角三角形;
(II)試確定的值,使得二面角的平面角余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級(jí)籽棉2噸、二級(jí)籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級(jí)籽棉1噸,二級(jí)籽棉2噸.每1噸甲種棉紗的利潤(rùn)為900元,每1噸乙種棉紗的利潤(rùn)為600元.工廠在生產(chǎn)這兩種棉紗的計(jì)劃中,要求消耗一級(jí)籽棉不超過250噸,二級(jí)籽棉不超過300噸.問甲、乙兩種棉紗應(yīng)各生產(chǎn)多少噸,能使利潤(rùn)總額最大?并求出利潤(rùn)總額的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 (本小題滿分12分)
如圖, 在四面體ABOC中, , 且.
(Ⅰ)設(shè)為為的中點(diǎn), 證明: 在上存在一點(diǎn),使,并計(jì)算;
(Ⅱ)求二面角的平面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位用2160萬元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).
(1)寫出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為 ( )
(參考數(shù)據(jù): )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為 ( )
(參考數(shù)據(jù): )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,A,B兩點(diǎn)的極坐標(biāo)分別為.
(Ⅰ)求圓C的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且曲線在處的切線與平行.
(1)求的值;
(2)當(dāng)時(shí),試探究函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com