精英家教網 > 高中數學 > 題目詳情

【題目】如圖空間四邊形ABCD,E、F、G、H分別為AB、AD、CB、CD的中點且AC=BD,AC⊥BD,試判斷四邊形EFGH的形狀,并證明.

【答案】證明:四邊形EFGH為正方形.下面給出證明:
∵E、F、G、H分別為AB、AD、CB、CD的中點,
,

∴四邊形EFGH是平行四邊形.
同理可證:
∵AC=BD,BD⊥AC,
∴EF=EG,EF⊥EG.
∴平行四邊形EFGH是正方形.
【解析】由于E、F、G、H分別為AB、AD、CB、CD的中點,利用三角形的中位線定理可證明:四邊形EFGH是平行四邊形.
由AC=BD,BD⊥AC,可證明:EF=EG,EF⊥EG.因此四邊形EFGH是正方形.
【考點精析】利用平行公理對題目進行判斷即可得到答案,需要熟知平行于同一條直線的兩條直線互相平行.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖1所示,在等腰梯形中, .把沿折起,使得,得到四棱錐.如圖2所示.

(1)求證:面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

(1)當時,試求的單調增區(qū)間;

(2)試求上的最大值;

(3)當時,求證:對于恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列四個命題:
①三點確定一個平面;
②三條兩兩相交的直線確定一個平面;
③在空間上,與不共面四點A,B,C,D距離相等的平面恰有7個;
④兩個相交平面把空間分成四個區(qū)域.
其中真命題的序號是 (寫出所有真命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱中,,分別是的中點,求證:

(1)平面

(2);

(3)平面平面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已{x1 , x2 , x3 , x4}{x>0|(x﹣3)sinπx=1},則x1+x2+x3+x4的最小值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,幾何體由一個正三棱柱截去一個三棱錐而得, , , 平面, 的中點, 為棱上一點,且平面.

(1)若在棱上,且,證明: 平面

(2)過作平面的垂線,垂足為,確定的位置(說明作法及理由),并求線段的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,A,B是海面上位于東西方向相距5(3+)海里的兩個觀測點,現位于A點北偏東45°,B點北偏西60°的D點有一艘輪船發(fā)出求救信號,位于B點南偏西60°且與B點相距20海里的C點的救援船立即即前往營救,其航行速度為30海里/小時,該救援船到達D點需要多長時間?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設二次函數f(x)=ax2+bx+c的圖象過點(0,1)和(1,4),且對于任意的實數x,不等式f(x)≥4x恒成立.
(1)求函數f(x)的表達式;
(2)設g(x)=kx+1,若F(x)=g(x)﹣f(x),求F(x)在[1,2]上的最小值;
(3)設g(x)=kx+1,若G(x)=在區(qū)間[1,2]上是增函數,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案