【題目】下表中的數(shù)表為森德拉姆篩”(森德拉姆,東印度學(xué)者),其特點(diǎn)是每行每列都成等差數(shù)列.

2

3

4

5

6

7

3

5

7

9

11

13

4

7

10

13

16

19

5

9

13

17

21

25

6

11

16

21

26

31

7

13

19

25

31

37

在上表中,2017出現(xiàn)的次數(shù)為(

A. 18 B. 36 C. 48 D. 72

【答案】B

【解析】

1行數(shù)組成的數(shù)列是以2為首項(xiàng),公差為1的等差數(shù)列,第列數(shù)組成的數(shù)列是以為首項(xiàng),公差為j的等差數(shù)列,求出通項(xiàng)公式,就求出結(jié)果.

記第行第列的數(shù)為,那么每一組的解就對(duì)應(yīng)表中的一個(gè)數(shù).因?yàn)榈?/span>1行的數(shù)組成的數(shù)列)是以2為首項(xiàng),公差為1的等差數(shù)列,所以又第列數(shù)組成的數(shù)列)是以為首項(xiàng),公差為的等差數(shù)列,所以.,則.據(jù)此易知,2017出現(xiàn)的次數(shù)為.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中, , .直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使平面平面. 為線段的中點(diǎn), 為線段上的動(dòng)點(diǎn).

(1)求證:

(2)當(dāng)點(diǎn)是線段中點(diǎn)時(shí),求二面角的余弦值;

(3)是否存在點(diǎn),使得直線平面?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

1)求圓心C的坐標(biāo)及半徑r的大;

2)已知不過原點(diǎn)的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線l的方程;

3)從圓外一點(diǎn)向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知以為圓心的圓及其上一點(diǎn).

1)設(shè)圓軸相切,與圓外切,且圓心在直線上,求圓的方程;

2)設(shè)垂直于的直線與圓相交于兩點(diǎn),且,求直線的方程;

3)設(shè)點(diǎn)滿足:存在圓上的兩點(diǎn),使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廟會(huì)是我國古老的傳統(tǒng)民俗文化活動(dòng),又稱“廟市”或 “節(jié)場”.廟會(huì)大多在春節(jié)、元宵節(jié)等節(jié)日舉行.廟會(huì)上有豐富多彩的文化娛樂活動(dòng),如“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎(jiǎng)品,則“中獎(jiǎng)”).今年春節(jié)期間,某校甲、乙、丙、丁四位同學(xué)相約來到某廟會(huì),每人均獲得砸一顆金蛋的機(jī)會(huì).游戲開始前,甲、乙、丙、丁四位同學(xué)對(duì)游戲中獎(jiǎng)結(jié)果進(jìn)行了預(yù)測,預(yù)測結(jié)果如下:

甲說:“我或乙能中獎(jiǎng)”; 乙說:“丁能中獎(jiǎng)”;

丙說:“我或乙能中獎(jiǎng)”; 丁說:“甲不能中獎(jiǎng)”.

游戲結(jié)束后,這四位同學(xué)中只有一位同學(xué)中獎(jiǎng),且只有一位同學(xué)的預(yù)測結(jié)果是正確的,則中獎(jiǎng)的同學(xué)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊黃銅板上插著三根寶石針,在其中一根針上從下到上穿好由大到小的若干金片.若按照下面的法則移動(dòng)這些金片:每次只能移動(dòng)一片金片;每次移動(dòng)的金片必須套在某根針上;大片不能疊在小片上面.設(shè)移完片金片總共需要的次數(shù)為,可推得.求移動(dòng)次數(shù)的程序框圖模型如圖所示,則輸出的結(jié)果是( )

A. 1022 B. 1023 C. 1024 D. 1025

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目,若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.

某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學(xué)

生物

歷史

地理

政治

男生

選考方案確定的有8人

8

8

4

2

1

1

選考方案待確定的有6人

4

3

0

1

0

0

女生

選考方案確定的有10人

8

9

6

3

3

1

選考方案待確定的有6人

5

4

1

0

0

1

(Ⅰ)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?

(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;

(Ⅲ)從選考方案確定的8名男生隨機(jī)選出2名,設(shè)隨機(jī)變量兩名男生選考方案相同時(shí),兩名男生選考方案不同時(shí),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預(yù)測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;

②當(dāng)為何值時(shí),銷售額最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的極小值;

2)若上,使得成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案