【題目】近期,某市公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù), 表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表1所示:

根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.

(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi), (均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次;

(3)推廣期結(jié)束后,車隊(duì)對(duì)乘客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下

已知該線路公交車票價(jià)為2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受8折優(yōu)惠,有的概率享受9折優(yōu)惠.根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,試估計(jì)從20名乘客從中隨機(jī)抽取1人,恰好享受8折優(yōu)惠的概率 .

參考數(shù)據(jù):

66

1.54

2711

50.12

3.47

其中,

參考公式:

對(duì)于一組數(shù)據(jù) ,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:, .

【答案】(1)適宜作為掃碼支付的人數(shù)關(guān)于活動(dòng)推出天數(shù)的回歸方程類型;(2)3470;(3).

【解析】

1)根據(jù)散點(diǎn)圖直接寫出結(jié)果即可;

2)對(duì)兩邊同時(shí)取常用對(duì)數(shù),得到,設(shè),

得到,根據(jù)題中數(shù)據(jù)求出,,進(jìn)而可得,再化簡整理即可得出回歸方程;將代入所求回歸方程即可求出預(yù)測(cè)值;

(3)由題意確定享受八折優(yōu)惠的人數(shù),根據(jù)古典概型的概率計(jì)算公式即可求出結(jié)果.

(1)根據(jù)散點(diǎn)圖判斷,適宜作為掃碼支付的人數(shù)關(guān)于活動(dòng)推出天數(shù)的回歸方程類型;

(2)∵,兩邊同時(shí)取常用對(duì)數(shù)得:;設(shè)

,∵,

把樣本中心點(diǎn)代入,得:,∴,

,∴y關(guān)于x的回歸方程式:;

代入上式: ∴

活動(dòng)推出第8天使用掃碼支付的人次為3470;

(3)由題意,20名乘客中,現(xiàn)金支付的有2人,乘車卡支付的有12人,掃碼支付的有6人,

其中享受八折優(yōu)惠的共有,12+2=14人,由古典概型計(jì)算公式,所以估計(jì)從20名乘客從中隨機(jī)抽取1人,恰好享受8折優(yōu)惠的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)站從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶中隨機(jī)抽取名進(jìn)行調(diào)查,將受訪用戶按年齡分成組: ,…, ,并整理得到如下頻率分布直方圖:

(Ⅰ)求的值;

(Ⅱ)從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶中隨機(jī)抽取一人,估計(jì)其年齡低于歲的概率;

(Ⅲ)估計(jì)春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶的平均年齡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解本校學(xué)生網(wǎng)課期間課后玩電腦游戲時(shí)長情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生每天玩電腦游戲的時(shí)長的頻率分布直方圖.

1)根據(jù)頻率分布直方圖估計(jì)抽取樣本的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)已知樣本中玩電腦游戲時(shí)長在的學(xué)生中,男生比女生多1人,現(xiàn)從中任選3人進(jìn)行回訪,求選出的3人中恰有兩人是男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某一部件由四個(gè)電子元件按如圖方式連接而成,元件1或元件2正常工作,且元件3或元件4正常工作,則部件正常工作.設(shè)四個(gè)電子元件的使用壽命(單位:小時(shí))均服從正態(tài)分布,且各個(gè)元件能否正常工作相互獨(dú)立,那么該部件的使用壽命超過1000小時(shí)的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線,,是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,則

②若,,,則

③若,,則

④若,,則

其中正確命題的序號(hào)是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)的導(dǎo)函數(shù)的圖象,給出下列命題:

①-2是函數(shù)的極值點(diǎn);

②1是函數(shù)的極值點(diǎn);

的圖象在處切線的斜率小于零;

④函數(shù)在區(qū)間上單調(diào)遞增.

則正確命題的序號(hào)是( )

A. ①③ B. ②④ C. ②③ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)學(xué)生會(huì)為了調(diào)查愛好游泳運(yùn)動(dòng)與性別是否有關(guān),通過隨機(jī)詢問110名性別不同的高中生是否愛好游泳運(yùn)動(dòng)得到如下的列聯(lián)表:

pk2k

0.050

0.010

0.001

k

3.841

6.635

10.828

總計(jì)

愛好

40

20

60

不愛好

20

30

50

總計(jì)

60

50

110

,并參照附表,得到的正確結(jié)論是(  )

A. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好游泳運(yùn)動(dòng)與性別有關(guān)”

B. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好游泳運(yùn)動(dòng)與性別無關(guān)”

C. 的把握認(rèn)為“愛好游泳運(yùn)動(dòng)與性別有關(guān)”

D. 的把握認(rèn)為“愛好游泳運(yùn)動(dòng)與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】機(jī)床廠今年年初用98萬元購進(jìn)一臺(tái)數(shù)控機(jī)床,并立即投入生產(chǎn)使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利額為y萬元.

()寫出y與x之間的函數(shù)關(guān)系式;

()從第幾年開始,該機(jī)床開始盈利(盈利額為正值);

()使用若干年后,對(duì)機(jī)床的處理方案有兩種:

(1)當(dāng)年平均盈利額達(dá)到最大值時(shí),以30萬元價(jià)格處理該機(jī)床;

(2)當(dāng)盈利額達(dá)到最大值時(shí),以12萬元價(jià)格處理該機(jī)床.

請(qǐng)你研究一下哪種方案處理較為合理?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案