【題目】如圖是函數(shù)的導函數(shù)的圖象,給出下列命題:

①-2是函數(shù)的極值點;

②1是函數(shù)的極值點;

的圖象在處切線的斜率小于零;

④函數(shù)在區(qū)間上單調(diào)遞增.

則正確命題的序號是( )

A. ①③ B. ②④ C. ②③ D. ①④

【答案】D

【解析】

根據(jù)導函數(shù)圖象可判定導函數(shù)的符號,從而確定函數(shù)的單調(diào)性,得到極值點,以及根據(jù)導數(shù)的幾何意義可知在某點處的導數(shù)即為在該點處的切線斜率.

根據(jù)導函數(shù)圖象可知當時,,在時,則函數(shù)上單調(diào)遞減,在上單調(diào)遞增,
在區(qū)間上上單調(diào)遞增正確,即④正確
而在處左側單調(diào)遞減,右側單調(diào)遞增,則-2是函數(shù)的極小值點,故①正確
∵函數(shù)上單調(diào)遞減,在上單調(diào)遞增
處左側導函數(shù)與右側導函數(shù)同號,1不是函數(shù)的極值點,故②不正確;
∵函數(shù)x=0處的導數(shù)大于0
的圖象在處切線的斜率大于零,故③不正確
故正確的為:①④

故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知傾斜角為的直線經(jīng)過點.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的普通方程;

(2)若直線與曲線有兩個不同的交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)是自然對數(shù)的底數(shù)).

(1)若有最小值,求的取值范圍,并求出的最小值;

(2)若對任意實數(shù),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:

年份x

2011

2012

2013

2014

2015

儲蓄存款y

(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,得到下表2:

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(1)求z關于t的線性回歸方程;

(2)通過(1)中的方程,求出y關于x的回歸方程;

(3)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點列{An}、{Bn}分別在銳角兩邊(不在銳角頂點),且|AnAn+1|=|An+1An+2|,An≠An+2 , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N*(P≠Q(mào)表示點P與Q不重合),若dn=|AnBn|,Sn為△AnBnBn+1的面積,則(

A.{dn}是等差數(shù)列
B.{Sn}是等差數(shù)列
C.{d }是等差數(shù)列
D.{S }是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和記為Sn且滿足Sn=2an﹣1,n∈N*;
(1)求數(shù)列{an}的通項公式;
(2)設Tn=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n+1anan+1 , 求{Tn}的通項公式;
(3)設有m項的數(shù)列{bn}是連續(xù)的正整數(shù)數(shù)列,并且滿足:lg2+lg(1+ )+lg(1+ )+…+lg(1+ )=lg(log2am).
問數(shù)列{bn}最多有幾項?并求出這些項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,且a≠1,則雙曲線C1 ﹣y2=1與雙曲線C2 ﹣x2=1的(
A.焦點相同
B.頂點相同
C.漸近線相同
D.離心率相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓右焦點,離心率為,過作兩條互相垂直的弦,設中點分別為.

(1)求橢圓的方程;

(2) 證明:直線必過定點,并求出此定點坐標;

(3) 若弦的斜率均存在,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,,,,將四邊形沿對角線折成四面.使平面平面,則下列結論正確的是( ).

A. B.

C. 與平面所成的角為 D. 四面體的體積為

查看答案和解析>>

同步練習冊答案