【題目】已知函數(shù) (a∈R,e為自然對(duì)數(shù)的底數(shù)),,其中在x=0處的切線(xiàn)方程為y=bx.
(1)求a,b的值;
(2)求證:;
(3)求證:有且僅有兩個(gè)零點(diǎn).
【答案】(1),;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析
【解析】
(1)求導(dǎo)得到,,,解得答案.
(2)先證明,,再證明,得到,得到答案.
(3)求導(dǎo)得到,確定導(dǎo)函數(shù)單調(diào)遞增,故存在使,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,根據(jù)零點(diǎn)存在定理得到答案.
(1),,
故,,故,.
(2)先證明,設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,故,故恒成立.
再證明,設(shè),則,
函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,故,
故.
故,
,
當(dāng)時(shí),,;當(dāng)時(shí),易知,
函數(shù)為偶函數(shù),故恒成立,故.
故,得證.
(3),則,
,恒成立,
故單調(diào)遞增,,,
故存在使,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
,當(dāng)時(shí),,
故函數(shù)在上有唯一零點(diǎn),在上有唯一零點(diǎn),故有且僅有兩個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng),為兩個(gè)不相等的正數(shù),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下面類(lèi)比推理:
①“若2a<2b,則a<b”類(lèi)比推出“若a2<b2,則a<b”;
②“(a+b)c=ac+bc(c≠0)”類(lèi)比推出“ (c≠0)”;
③“a,b∈R,若a-b=0,則a=b”類(lèi)比推出“a,b∈C,若a-b=0,則a=b”;
④“a,b∈R,若a-b>0,則a>b”類(lèi)比推出“a,b∈C,若a-b>0,則a>b(C為復(fù)數(shù)集)”.
其中結(jié)論正確的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,以橢圓的2個(gè)焦點(diǎn)與1個(gè)短軸端點(diǎn)為頂點(diǎn)的三角形的面積為2。
(1)求橢圓的方程;
(2)如圖,斜率為k的直線(xiàn)l過(guò)橢圓的右焦點(diǎn)F,且與橢圓交與A,B兩點(diǎn),以線(xiàn)段AB為直徑的圓截直線(xiàn)x=1所得的弦的長(zhǎng)度為,求直線(xiàn)l的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
(1)若函數(shù)在為增函數(shù),求實(shí)數(shù)的值;
(2)若函數(shù)為偶函數(shù),對(duì)于任意,任意,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿(mǎn)足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,,不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次數(shù)學(xué)考試中,小江的成績(jī)?cè)?/span>90分以上的概率是0.25,在的概率是0.48,在的概率是0.11,在的概率是0.09,在60分以下的概率是0.07.計(jì)算:
(1)小江在此次數(shù)學(xué)考試中取得80分及以上的概率;
(2)小江考試及格(成績(jī)不低于60分)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于多項(xiàng)式的展開(kāi)式,下列結(jié)論正確的是( )
A.各項(xiàng)系數(shù)之和為1B.各項(xiàng)系數(shù)的絕對(duì)值之和為
C.不存在常數(shù)項(xiàng)D.的系數(shù)為40
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com