【題目】關于多項式的展開式,下列結論正確的是( )
A.各項系數之和為1B.各項系數的絕對值之和為
C.不存在常數項D.的系數為40
科目:高中數學 來源: 題型:
【題目】已知函數 (a∈R,e為自然對數的底數),,其中在x=0處的切線方程為y=bx.
(1)求a,b的值;
(2)求證:;
(3)求證:有且僅有兩個零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】的內角、、所對的邊分別為、、,下列命題:(1)三邊、、既成等差數列,又成等比數列,則是等邊三角形;(2)若,則是等腰三角形;(3)若,則;(4)若,則;(5),,若唯一確定,則.其中,正確命題是( )
A.(1)(3)(4)B.(1)(2)(3)C.(1)(2)(5)D.(3)(4)(5)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】 稿酬所得以個人每次取得的收入,定額或定率減除規(guī)定費用后的余額為應納稅所得額,每次收入不超過4000元,定額減除費用800元;每次收入在4000元以上的,定率減除20%的費用.適用20%的比例稅率,并按規(guī)定對應納稅額減征30%,計算公式為:
(1)每次收入不超過4000元的:應納稅額=(每次收入額-800)×20%×(1-30%)
(2)每次收入在4000元以上的:應納稅額=每次收入額×(1-20%)×20%×(1-30%).已知某人出版一份書稿,共納稅280元,這個人應得稿費(扣稅前)為 元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1) 解不等式;
(2) 設函數,若函數為偶函數,求實數的值;
(3) 當時,是否存在實數(其中),使得不等式恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】射擊測試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機變量表示該射手一次測試累計得分,如果的值不低于3分就認為通過測試,立即停止射擊;否則繼續(xù)射擊,但一次測試最多打靶3次,每次射擊的結果相互獨立。
(1)如果該射手選擇方案1,求其測試結束后所得分的分布列和數學期望E;
(2)該射手選擇哪種方案通過測試的可能性大?請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,長軸長為,直線:交橢圓于不同的兩點、.
(1)求橢圓的方程;
(2)若,且,求的值(點為坐標原點);
(3)若坐標原點到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線:上一點到焦點的距離為5.
(1)求拋物線的方程;
(2)過點的直線與拋物線交于兩點, 過點作直線的垂線,垂足為,判斷:三點是否共線,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com