精英家教網 > 高中數學 > 題目詳情

【題目】某物流公司進行倉儲機器人升級換代期間,第一年有機器人臺,平均每臺機器人創(chuàng)收利潤萬元預測以后每年平均每臺機器人創(chuàng)收利潤都比上一年增加萬元,但該物流公司在用機器人數量每年都比上一年減少

(1)設第年平均每臺機器人創(chuàng)收利潤為萬元,在用機器人數量為臺,求,的表達式;

(2)依上述預測,第幾年該物流公司在用機器人創(chuàng)收的利潤最多?

【答案】(1)),).

(2)第6和第7年該物流公司在用機器人創(chuàng)收的利潤最多

【解析】

(1)根據題意可知數列為等差數列,數列是等比數列,根據通項公式定義可求得數列數列的通項公式。

(2)由題意,利潤為的前n項和,等差數列乘以等比數列的求和可根據錯位相減法求值,根據求得的前n項和分析出最大利潤。

(1)由題意知,數列是首項為,公差為的等差數列,

),

數列是首項為,公比為的等比數列,

).

(2)設第年該物流公司在用機器人創(chuàng)收的利潤為,則

因為,所以,

即第6和第7年該物流公司在用機器人創(chuàng)收的利潤最多

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線的焦點為.

(1)若過點的直線與拋物線有且只有一個交點,求直線的方程;

(2)若直線與拋物線交于兩點,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓內一點,直線過點且與圓交于,兩點.

(1)求圓的圓心坐標和面積;

(2)若直線的斜率為,求弦的長;

(3)若圓上恰有三點到直線的距離等于,求直線的方程

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線

(1)若,過點的直線交曲線兩點,且,求直線的方程;

(2)若曲線表示圓時,已知圓與圓交于兩點,若弦所在的直線方程為, 為圓的直徑,且圓過原點,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,是邊長為的正方形,平面,,與平面所成角為

Ⅰ)求證:平面

Ⅱ)求二面角的余弦值.

Ⅲ)設點是線段上一個動點,試確定點的位置,使得平面,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)

如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,DAB

中點.

(1) 求證: AC⊥BC1

(2) 求證:AC1平面CDB1

(3) 求異面直線AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種.若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯系,發(fā)生交通事故的次數越多,費率也就越高,具體浮動情況如表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

A1

上一個年度未發(fā)生有責任道路交通事故

下浮10%

A2

上兩個年度未發(fā)生有責任道路交通事故

下浮20%

A3

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

A4

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

A5

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

A6

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定a=950.記X為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求X的分布列與數學期望值;(數學期望值保留到個位數字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的對稱軸為坐標軸,頂點是坐標原點,準線方程為,直線與拋物線相交于不同的, 兩點.

(1)求拋物線的標準方程;

(2)如果直線過拋物線的焦點,求的值;

(3)如果,直線是否過一定點,若過一定點,求出該定點;若不過一定點,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知AB,CD是圓O中兩條互相垂直的直徑,兩個小圓與圓O以及AB,CD均相切,則往圓O內投擲一個點,該點落在陰影部分的概率為(
A.12﹣8
B.3﹣2
C.8﹣5
D.6﹣4

查看答案和解析>>

同步練習冊答案