【題目】如圖所示,已知AB,CD是圓O中兩條互相垂直的直徑,兩個(gè)小圓與圓O以及AB,CD均相切,則往圓O內(nèi)投擲一個(gè)點(diǎn),該點(diǎn)落在陰影部分的概率為( )
A.12﹣8
B.3﹣2
C.8﹣5
D.6﹣4
【答案】D
【解析】解:設(shè)小圓半徑為r,則圓O的半徑為r+ r,由幾何概型的公式得到:往圓O內(nèi)投擲一個(gè)點(diǎn),該點(diǎn)落在陰影部分的概率為:r+ ; 故選:D.
【考點(diǎn)精析】掌握定積分的概念和幾何概型是解答本題的根本,需要知道定積分的值是一個(gè)常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個(gè)基本步驟:①分割;②近似代替;③求和;④取極限;幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某物流公司進(jìn)行倉(cāng)儲(chǔ)機(jī)器人升級(jí)換代期間,第一年有機(jī)器人臺(tái),平均每臺(tái)機(jī)器人創(chuàng)收利潤(rùn)萬(wàn)元.預(yù)測(cè)以后每年平均每臺(tái)機(jī)器人創(chuàng)收利潤(rùn)都比上一年增加萬(wàn)元,但該物流公司在用機(jī)器人數(shù)量每年都比上一年減少.
(1)設(shè)第年平均每臺(tái)機(jī)器人創(chuàng)收利潤(rùn)為萬(wàn)元,在用機(jī)器人數(shù)量為臺(tái),求,的表達(dá)式;
(2)依上述預(yù)測(cè),第幾年該物流公司在用機(jī)器人創(chuàng)收的利潤(rùn)最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別為,上頂點(diǎn)為, 是斜邊長(zhǎng)為的等腰直角三角形,若直線與橢圓交于不同兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時(shí),求線段的長(zhǎng)度;
(Ⅲ)是否存在,使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在三棱錐中, , , 為的中點(diǎn).
(1)求證: ;
(2)設(shè)平面平面, , ,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市電視臺(tái)為了宣傳舉辦問(wèn)答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了人,回答問(wèn)題計(jì)結(jié)果如下圖表所示:
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?
(3)在(2)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于
兩點(diǎn).
(1)求線段的長(zhǎng)度;
(2) 為坐標(biāo)原點(diǎn), 為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在極值點(diǎn)x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=0;
(3)設(shè)a>0,函數(shù)g(x)=|f(x)|,求證:g(x)在區(qū)間[﹣1,1]上的最大值不小于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓心為,定點(diǎn),P為圓上一點(diǎn),線段上一點(diǎn)N滿足,直線上一點(diǎn)Q,滿足.
(Ⅰ) 求點(diǎn)Q的軌跡C的方程;
(Ⅱ) O為坐標(biāo)原點(diǎn), 是以為直徑的圓,直線與相切,并與軌跡C交于不同的兩點(diǎn)A,B. 當(dāng)且滿足時(shí),求△OAB面積S的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com