【題目】已知函數(shù)a0a≠1).

1)判斷并證明函數(shù)fx)的奇偶性;

2)若ft2t1+ft2)<0,求實數(shù)t的取值范圍.

【答案】(1)函數(shù)fx)是奇函數(shù),證明見解析(2)答案見解析

【解析】

1)求出函數(shù)的定義域,利用奇偶性的定義判斷函數(shù)fx)的奇偶性;

2)判斷函數(shù)的單調(diào)性,然后通過ft2t1+ft-2)<0,求實數(shù)t的取值范圍.

解:(1關(guān)于原點對稱;

任意取x∈(-1,1),

故函數(shù)fx)是奇函數(shù);

2)因為x∈(-1,1)時,單調(diào)遞增

a1時,fx)單調(diào)遞增;0a1時,fx)單調(diào)遞減,

因為fx)是奇函數(shù),故ft2t1+ft2)<0ft2t1)<f2t,

a1時,1t2t12t1,

0a1時,12tt2t11.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了解世界杯期間某地區(qū)電視觀眾對《戰(zhàn)斗吧足球》節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該節(jié)目時間的頻率分布直方圖:

(注:頻率分布直方圖中縱軸表示,例如,收看時間在分鐘的頻率是)

將日均收看該足球節(jié)目時間不低于40分鐘的觀眾稱為“足球迷”.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷是否可以認為“足球迷”與性別有關(guān)?如果有關(guān),有多大把握?

非足球迷

足球迷

合計

10

55

合計

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“足球迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列、均值和方差

附:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣2ax+lnx(a∈R),x∈(1,+∞).
(1)若函數(shù)f(x)有且只有一個極值點,求實數(shù)a的取值范圍;
(2)對于函數(shù)f(x)、f1(x)、f2(x),若對于區(qū)間D上的任意一個x,都有f1(x)<f(x)<f2(x),則稱函數(shù)f(x)是函數(shù)f1(x)、f2(x)在區(qū)間D上的一個“分界函數(shù)”.已知f1(x)=(1﹣a2)lnx,f2(x)=(1﹣a)x2 , 問是否存在實數(shù)a,使得f(x)是函數(shù)f1(x)、f2(x)在區(qū)間(1,+∞)上的一個“分界函數(shù)”?若存在,求實數(shù)a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}中,已知3a5=7a10 , 且a1<0,則數(shù)列{an}前n項和Sn(n∈N*)中最小的是(
A.S7或S8
B.S12
C.S13
D.S14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,等腰梯形中,,,的中點,矩形所在的平面和平面互相垂直.

求證:平面

)設(shè)的中點為,求證:平面

)求三棱錐的體積.(只寫出結(jié)果,不要求計算過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某景點擬建一個扇環(huán)形狀的花壇(如圖所示),按設(shè)計要求扇環(huán)的周長為36米,其中大圓弧所在圓的半徑為14米,設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

關(guān)于的函數(shù)關(guān)系式;

已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4/米,弧線部分的裝飾費用為16/米,設(shè)花壇的面積與裝飾總費用之比為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋擲兩枚骰子,求:

(1)點數(shù)之和為4的倍數(shù)的概率;

(2)點數(shù)之和大于5而小于10的概率;

(3)同時拋兩枚骰子,求至少有一個5點或者6點的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱的棱長均為.點是側(cè)棱的中點,點分別是側(cè)面,底面的動點,且平面,平面.則點的軌跡的長度為___________

查看答案和解析>>

同步練習冊答案