精英家教網 > 高中數學 > 題目詳情

【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.

【答案】解:①∵2sinAcosB=2sinC﹣sinB, ∵由正弦定理可得:2acosB=2c﹣b,即:cosB= ,
又∵cosB= ,
= ,解得:b2+c2﹣a2=bc,
∴cosA= = = ,
又∵A∈(0,π),
∴A=
②∵由余弦定理可得:a2=b2+c2﹣2bccosA,a=4 ,b+c=8,
∴(4 2=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,
∴bc= ,
∴△ABC 的面積S= bcsinA= =
【解析】①由正弦定理化簡已知等式可得cosB= ,結合余弦定理可求b2+c2﹣a2=bc,可求cosA,結合范圍A∈(0,π),可求A的值.②由已知及余弦定理可得bc= ,進而利用三角形面積公式即可計算得解.
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,DCC1中點.

(1)求證:AB1⊥平面A1BD;

(2)求銳二面角A-A1D-B的余弦值;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等差數列{an}的前n項和為Sn , 且a1=1,S7=28,記bn=[lgan],其中[x]表示不超過x的最大整數,如[0.9]=0,[lg99]=1,則數列{bn}的前1000項和為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數a0,a≠1).

1)判斷并證明函數fx)的奇偶性;

2)若ft2t1+ft2)<0,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數f(x)= sin2x﹣ cos2x+1的圖象向左平移 個單位,再向下平移1個單位,得到函數y=g(x)的圖象,則下列關予函數y=g(x)的說法錯誤的是(
A.函數y=g(x)的最小正周期為π
B.函數y=g(x)的圖象的一條對稱軸為直線x=
C. g(x)dx=
D.函數y=g(x)在區(qū)間[ ]上單調遞減

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (a,b∈R,且a≠0,e為自然對數的底數).
(1)若曲線f(x)在點(e,f(e))處的切線斜率為0,且f(x)有極小值,求實數a的取值范圍.
(2)①當 a=b=l 時,證明:xf(x)+2<0; ②當 a=1,b=﹣1 時,若不等式:xf(x)>e+m(x﹣1)在區(qū)間(1,+∞)內恒成立,求實數m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,已知

(1)求的值;

(2)若,求邊c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓及直線直線被圓截得的弦長為

)求實數的值.

)求過點并與圓相切的切線方程.

查看答案和解析>>

同步練習冊答案