【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=1,S7=28,記bn=[lgan],其中[x]表示不超過(guò)x的最大整數(shù),如[0.9]=0,[lg99]=1,則數(shù)列{bn}的前1000項(xiàng)和為 .
【答案】1893
【解析】解:Sn為等差數(shù)列{an}的前n項(xiàng)和,且a1=1,S7=28,7a4=28.
可得a4=4,則公差d=1.
an=n,
bn=[lgn],則b1=[lg1]=0,b2=b3=…=b9=0,b10=b11=b12=…=b99=1.
b100=b101=b102=b103=…=b999=2,b1000=3.
數(shù)列{bn}的前1000項(xiàng)和為:9×0+90×1+900×2+3=1893.
所以答案是:1893.
【考點(diǎn)精析】掌握等差數(shù)列的前n項(xiàng)和公式是解答本題的根本,需要知道前n項(xiàng)和公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“楊輝三角”又稱(chēng)“賈憲三角”,是因?yàn)橘Z憲約在公元1050年首先使用“賈憲三角”進(jìn)行高次開(kāi)方運(yùn)算,而楊輝在公元1261年所著的《詳解九章算法》一書(shū)中,記錄了賈憲三角形數(shù)表,并稱(chēng)之為“開(kāi)方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)是 ( )
2017 2016 2015 2014……6 5 4 3 2 1
4033 4031 4029…………11 9 7 5 3
8064 8060………………20 16 12 8
16124……………………36 28 20
………………………
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實(shí)數(shù)λ的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= x2﹣2ax+lnx(a∈R),x∈(1,+∞).
(1)若函數(shù)f(x)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)對(duì)于函數(shù)f(x)、f1(x)、f2(x),若對(duì)于區(qū)間D上的任意一個(gè)x,都有f1(x)<f(x)<f2(x),則稱(chēng)函數(shù)f(x)是函數(shù)f1(x)、f2(x)在區(qū)間D上的一個(gè)“分界函數(shù)”.已知f1(x)=(1﹣a2)lnx,f2(x)=(1﹣a)x2 , 問(wèn)是否存在實(shí)數(shù)a,使得f(x)是函數(shù)f1(x)、f2(x)在區(qū)間(1,+∞)上的一個(gè)“分界函數(shù)”?若存在,求實(shí)數(shù)a的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
Ⅰ判斷直線l與圓C的交點(diǎn)個(gè)數(shù);
Ⅱ若圓C與直線l交于A,B兩點(diǎn),求線段AB的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}中,已知3a5=7a10 , 且a1<0,則數(shù)列{an}前n項(xiàng)和Sn(n∈N*)中最小的是( )
A.S7或S8
B.S12
C.S13
D.S14
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰梯形中,,,,,為的中點(diǎn),矩形所在的平面和平面互相垂直.
()求證:平面.
()設(shè)的中點(diǎn)為,求證:平面.
()求三棱錐的體積.(只寫(xiě)出結(jié)果,不要求計(jì)算過(guò)程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(2)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com