【題目】“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進行高次開方運算,而楊輝在公元1261年所著的《詳解九章算法》一書中,記錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個數(shù),則這個數(shù)是 ( )

2017 2016 2015 2014……6 5 4 3 2 1

4033 4031 4029…………11 9 7 5 3

8064 8060………………20 16 12 8

16124……………………36 28 20

………………………

A. B. C. D.

【答案】B

【解析】

數(shù)表的每一行都是等差數(shù)列,從右到左,第一行公差為1,第二行公差為2,第三行公差為4,…,第2015行公差為22014,第2016行只有M,由此可得結(jié)論.

由題意,數(shù)表的每一行都是等差數(shù)列,從右到左,

且第一行公差為1,第二行公差為2,第三行公差為4,…,第2015行公差為22014,

故第1行的第一個數(shù)為:2×2﹣1,

第2行的第一個數(shù)為:3×20,

第3行的第一個數(shù)為:4×21,

第n行的第一個數(shù)為:(n+1)×2n﹣2,

第2017行只有M,

則M=(1+2017)22015=2018×22015

故答案為:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角梯形中, , , , 底面, 底面且有.

(1)求證: ;

(2)若線段的中點為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的,則判斷框內(nèi)可以填入

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司試銷一種成本單價為500/件的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800/件.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量(件)與銷售單價(元/件)可近似看作一次函數(shù)的關(guān)系(如圖所示).

1)由圖象,求函數(shù)的表達式;

2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價﹣成本總價)為元.試用銷售單價表示毛利潤,并求銷售單價定為多少時,該公司獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預測,甲、乙項目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合,則滿足的取值范圍是()

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確命題的個數(shù)是()

若直線與直線平行,則直線平行于經(jīng)過直線的所有平面;平行于同一個平面的兩條直線互相平行;是兩條直線,是兩個平面,且,,則是異面直線;④若直線恒過定點(1,0),則直線方程可設(shè)為.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,DCC1中點.

(1)求證:AB1⊥平面A1BD;

(2)求銳二面角A-A1D-B的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn , 且a1=1,S7=28,記bn=[lgan],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg99]=1,則數(shù)列{bn}的前1000項和為

查看答案和解析>>

同步練習冊答案