【題目】如圖,已知圓的方程為,圓的方程為,若動(dòng)圓與圓內(nèi)切,與圓外切.

Ⅰ)求動(dòng)圓圓心的軌跡的方程;

Ⅱ)過(guò)直線上的點(diǎn)作圓的兩條切線,設(shè)切點(diǎn)分別是,若直線與軌跡交于,兩點(diǎn),求的最小值.

【答案】(1)(2)

【解析】

Ⅰ)設(shè)動(dòng)圓的半徑為,由題動(dòng)圓與圓內(nèi)切,與圓外切,則

,由此即可得到動(dòng)圓圓心的軌跡是以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓,進(jìn)而得到動(dòng)圓圓心的軌跡的方程;

設(shè)直線上任意一點(diǎn)的坐標(biāo)是,切點(diǎn)坐標(biāo)分別是,

;則經(jīng)過(guò)點(diǎn)的切線斜方程是,同理經(jīng)過(guò)點(diǎn)的切線方程是,又兩條切線相交于 .可得經(jīng)過(guò)兩點(diǎn)的直線的方程是,對(duì)分類討論分別求出的值,即可得到的最小值.

Ⅰ)設(shè)動(dòng)圓的半徑為,∵動(dòng)圓與圓內(nèi)切,與圓外切,

,且.于是,,

所以動(dòng)圓圓心的軌跡是以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓.從而,

所以.故動(dòng)圓圓心的軌跡的方程為

設(shè)直線上任意一點(diǎn)的坐標(biāo)是,切點(diǎn)坐標(biāo)分別是,

;則經(jīng)過(guò)點(diǎn)的切線斜率,方程是

經(jīng)過(guò)點(diǎn)的切線方程是,又兩條切線相交于 .

則有,所以經(jīng)過(guò)兩點(diǎn)的直線的方程是,

①當(dāng)時(shí),有,,,則;

②當(dāng)時(shí),聯(lián)立,整理得

設(shè)坐標(biāo)分別為,則,

所以,

綜上所述,當(dāng)時(shí),有最小值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)對(duì)參加“社會(huì)實(shí)踐活動(dòng)”的全體志愿者進(jìn)行學(xué)分考核,因該批志愿者表現(xiàn)良好,大學(xué)決定考核只有合格和優(yōu)秀兩個(gè)等次,若某志愿者考核合格,授予個(gè)學(xué)分;考核優(yōu)秀,授予個(gè)學(xué)分,假設(shè)該大學(xué)志愿者甲、乙、丙考核優(yōu)秀的概率為、.他們考核所得的等次相互獨(dú)立.

1)求在這次考核中,志愿者甲、乙、丙三人中至少一名考核為優(yōu)秀的概率;

2)記在這次考核中甲、乙、丙三名志愿者所得學(xué)分之和為隨機(jī)變量,求隨機(jī)變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】常州別稱龍城,是一座有著3200多年歷史的文化古城.常州既有春秋淹城、天寧寺等名勝古跡,又有中華恐龍園、嬉戲谷等游樂景點(diǎn),每年都有大量游客來(lái)常州參觀旅游.為合理配置旅游資源,管理部門對(duì)首次來(lái)中華恐龍園游覽的游客進(jìn)行了問卷調(diào)查,據(jù)統(tǒng)計(jì),其中的人計(jì)劃只游覽中華恐龍園,另外的人計(jì)劃既游覽中華恐龍園又參觀天寧寺.每位游客若只游覽中華恐龍園,得1分;若既游覽中華恐龍園又參觀天寧寺,得2.假設(shè)每位首次來(lái)中華恐龍園游覽的游客均按照計(jì)劃進(jìn)行,且是否參觀天寧寺相互獨(dú)立,視頻率為概率.

1)有2名首次來(lái)中華恐龍園游覽的游客是拼車到常州的,求2名游客都是既游覽中華恐龍園又參觀天寧寺的概率;

2)從首次來(lái)中華恐龍園游覽的游客中隨機(jī)抽取3人,記這3人的合計(jì)得分為X,求X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)存在,對(duì)任意,有不等式成立,求實(shí)數(shù)的取值范圍;

2)如果存在、,使得成立,求滿足條件的最大整數(shù);

3)對(duì)任意,存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABCD中,AB=AD=2BC=2,BCAD,ABAD,△PBD為正三角形.且PA=2

1)證明:平面PAB⊥平面PBC;

2)若點(diǎn)P到底面ABCD的距離為2,E是線段PD上一點(diǎn),且PB∥平面ACE,求四面體A-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線與曲線兩交點(diǎn)所在直線的極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,直線軸的交點(diǎn)為,與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在高中學(xué)習(xí)過(guò)程中,同學(xué)們經(jīng)常這樣說(shuō):“數(shù)學(xué)物理不分家,如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題!蹦嘲噌槍(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論。現(xiàn)從該班隨機(jī)抽取5位學(xué)生在一次考試中的數(shù)學(xué)和物理成績(jī),如下表:

(1)求數(shù)學(xué)成績(jī)y對(duì)物理成績(jī)x的線性回歸方程。若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);

(2)要從抽取的這5位學(xué)生中隨機(jī)抽取2位參加一項(xiàng)知識(shí)競(jìng)賽,求選中的學(xué)生的數(shù)學(xué)成績(jī)至少有一位高于120分的概率。(參考公式: 參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角、所對(duì)的邊分別為、,,當(dāng)角取最大值時(shí),的周長(zhǎng)為,則__________

查看答案和解析>>

同步練習(xí)冊(cè)答案