【題目】在中,角、、所對的邊分別為、、,,當角取最大值時,的周長為,則__________.
【答案】3
【解析】分析:根據(jù)題意由正弦定理得出cosA<0,A為鈍角,cosAcosC≠0,由兩角和的正弦函數(shù)公式,同角三角函數(shù)基本關系式可得出tanA=﹣3tanC,且tanC>0;由已知及基本不等式求出B取得最大值,可得C=B=,可求A,利用余弦定理可求a=b,結合已知求得b的值,進而可求a的值.
詳解:△ABC中,sinB=cos(B+C)sinC,
∴b=cos(B+C)c,即cosA=﹣<0,∴A為鈍角,
∴cosAcosC≠0;
由sinB=sin(A+C)=sinAcosC+cosAsinC=﹣2cosAsinC,
可得tanA=﹣3tanC,且tanC>0,
=
當且僅當tanC= 時取等號;
∴B取得最大值時,c=b=1,此時C=B=.
∴A=,由a2=b2+c2﹣2bccosA,可得:a=b,
∵三角形的周長為a+b+c=b +b+b=2.解得:b=,可得:a=b =3.
故答案為:3
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓的方程為,圓的方程為,若動圓與圓內(nèi)切,與圓外切.
(Ⅰ)求動圓圓心的軌跡的方程;
(Ⅱ)過直線上的點作圓的兩條切線,設切點分別是,,若直線與軌跡交于,兩點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】退休年齡延遲是平均預期壽命延長和人口老齡化背景下的一種趨勢.某機構為了了解某城市市民的年齡構成,從該城市市民中隨機抽取年齡段在[20,80]內(nèi)的600人進行調(diào)查,并按年齡層次繪制頻率分布直方圖,如圖所示.若規(guī)定年齡分布在[60,80]內(nèi)的人為“老年人”,將上述人口分布的頻率視為該城市年齡段在[20,80]的人口分布的概率.從該城市年齡段在[20,80]內(nèi)的市民中隨機抽取3人,記抽到“老年人”的人數(shù)為則隨機變量的數(shù)學期望為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線方程為,求實數(shù)、的值;
(2)設函數(shù),(其中為自然對數(shù)的底數(shù)).
①當時,求的最大值;
②若是單調(diào)遞減函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行促銷活動,有兩個摸獎箱,箱內(nèi)有一個“”號球,兩個“”號球,三個“”號球、四個無號球,箱內(nèi)有五個“”號球,五個“”號球,每次摸獎后放回,每位顧客消費額滿元有一次箱內(nèi)摸獎機會,消費額滿元有一次箱內(nèi)摸獎機會,摸得有數(shù)字的球則中獎,“”號球獎元,“”號球獎元,“”號球獎元,摸得無號球則沒有獎金。
(1)經(jīng)統(tǒng)計,顧客消費額服從正態(tài)分布,某天有位顧客,請估計消費額(單位:元)在區(qū)間內(nèi)并中獎的人數(shù).(結果四舍五入取整數(shù))
附:若,則,.
(2)某三位顧客各有一次箱內(nèi)摸獎機會,求其中中獎人數(shù)的分布列.
(3)某顧客消費額為元,有兩種摸獎方法,
方法一:三次箱內(nèi)摸獎機會;
方法二:一次箱內(nèi)摸獎機會.
請問:這位顧客選哪一種方法所得獎金的期望值較大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面,,點為棱的中點.
(1)證明:;
(2)求直線與平面所成角的正弦值;
(3)若為棱上一點,滿足,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為實常數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若存在兩個不相等的正數(shù)、滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一家商場銷售一種商品,該商品一天的需求量在范圍內(nèi)等可能取值,該商品的進貨量也在范圍內(nèi)取值(每天進貨1次).這家商場每銷售一件該商品可獲利60元;若供不應求,可從其他商店調(diào)撥,銷售一件該商品可獲利40元;若供大于求,剩余的每處理一件該商品虧損20元.設該商品每天的需求量為,每天的進貨量為件,該商場銷售該商品的日利潤為元.
(1)寫出這家商場銷售該商品的日利潤為關于需求量的函數(shù)表達式;
(2)寫出供大于求,銷售件商品時,日利潤的分布列;
(3)當進貨量多大時,該商場銷售該商品的日利潤的期望值最大?并求出日利潤的期望值的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com