【題目】有以下命題:
①對任意的α∈R都有sin3α=3sinα﹣4sin3α成立;
②對任意的△ABC都有等式a=bcosA+ccosB成立;
③滿足“三邊是連續(xù)的三個(gè)正整數(shù)且最大角是最小的2倍”的三角形存在且唯一;
④若A,B是鈍角△ABC的二銳角,則sinA+sinB<cosA+cosB.
其中正確的命題的個(gè)數(shù)是(
A.4
B.3
C.2
D.1

【答案】A
【解析】解:①對任意的α∈R都有sin3α=sin(α+2α)
=sinαcos2α+cosαsin2α
=sinα(cos2α﹣sin2α)+2sinαcos2α
=sinα(1﹣2sin2α)+2sinα(1﹣sin2α)
=3sinα﹣4sin3α,
故①正確;
②對任意的△ABC都有 =2R,
∴a=2RsinA
=2Rsin(B+C)
=2RsinBcosC+2RsinCcosB
=bcosC+ccosB,
故②正確;
③假設(shè)存在正整數(shù)k、k+1、k﹣1分別為三角形ABC的三邊長,
且其對應(yīng)的角分別為A、B、C,
=2R,
∵B=2C,
∴sinB=sin2C=2sinCcosC,
= ,即cosC= + ,
又∵C<A<B,即C<A<2C,
∴36°<C<45°,
<cosC< ,即 +
,
+1<k﹣1< 2,
+2<k< 3,
∴k=4或k=5,
經(jīng)檢驗(yàn)可知當(dāng)k=5時(shí)不滿足題意,
故③正確;
④∵A,B是鈍角△ABC的二銳角,
∴A+B<90°,
∴0°<B<90°﹣A<90°,
∴sinB<sin(90°﹣A)=cosB,
同理cosA>cos(90°﹣B)=sinA,
∴sinA+sinB<cosA+cosB,
故④正確;
故選:A.
【考點(diǎn)精析】通過靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】. 問:是否存在正數(shù)m,使得對于任意正數(shù),可使為三角形的三邊構(gòu)成三角形?如果存在:①試寫出一組x,y,m的值,②求出所有m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為了增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出x(x∈N*)名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤為10(a﹣ )萬元(a>0),剩下的員工平均每人每年創(chuàng)造的利潤為原來(1+ )倍.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多可以整出多少名員工從事第三產(chǎn)業(yè);
(2)若調(diào)整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則a的最大取值是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為選拔參加“央視猜燈謎大賽”的隊(duì)員,在校內(nèi)組織猜燈謎競賽.規(guī)定:第一階段知識測試成績不小于分的學(xué)生進(jìn)入第二階段比賽.現(xiàn)有名學(xué)生參加知識測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.

(1)估算這名學(xué)生測試成績的中位數(shù),并求進(jìn)入第二階段比賽的學(xué)生人數(shù);

(2)將進(jìn)入第二階段的學(xué)生分成若干隊(duì)進(jìn)行比賽.現(xiàn)甲、乙兩隊(duì)在比賽中均已獲得分,進(jìn)入最后強(qiáng)答階段.搶答規(guī)則:搶到的隊(duì)每次需猜條謎語,猜對條得分,猜錯(cuò)條扣分.根據(jù)經(jīng)驗(yàn),甲隊(duì)猜對每條謎語的概率均為,乙隊(duì)猜對每條謎語的概率均為,猜對第條的概率均為.若這兩條搶到答題的機(jī)會(huì)均等,您做為場外觀眾想支持這兩隊(duì)中的優(yōu)勝隊(duì),會(huì)把支持票投給哪隊(duì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,tanA是以﹣4為第三項(xiàng),4為第七項(xiàng)的等差數(shù)列的公差,tanB是以2為公差,9為第五項(xiàng)的等差數(shù)列的第二項(xiàng),則這個(gè)三角形是(
A.銳角三角形
B.鈍角三角形
C.等腰直角三角形
D.等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中曲線經(jīng)伸縮變換后得到曲線,在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(1)求曲線的參數(shù)方程和的直角坐標(biāo)方程;

(2)設(shè)為曲線上的一點(diǎn),又向曲線引切線,切點(diǎn)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, , 、分別為、的中點(diǎn),且.

(1)求證:平面平面;

(2)求證: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期中考試后,分別從兩個(gè)班級中各隨機(jī)抽取名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出的莖葉圖如下圖,記成績不低于分者為“成績優(yōu)良”.

(1)分別計(jì)算甲、乙兩班個(gè)樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更
佳;
(2)甲、乙兩班個(gè)樣本中,成績在分以下(不含分)的學(xué)生中任意選取人,求這人來自不同班級的概率;

(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績優(yōu)良

成績不優(yōu)良

總計(jì)

附:

獨(dú)立性檢驗(yàn)臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(算法流程圖)的輸出值x為(

A.13
B.12
C.22
D.11

查看答案和解析>>

同步練習(xí)冊答案