【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為

(1)寫(xiě)出曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)已知點(diǎn)是曲線(xiàn)上一點(diǎn),點(diǎn)是曲線(xiàn)上一點(diǎn),的最小值為,求實(shí)數(shù)的值.

【答案】(1)見(jiàn)解析;(2)

【解析】試題分析:(1)先將曲線(xiàn)的參數(shù)方程消參變?yōu)槠胀ǚ匠,再化為極坐標(biāo)方程,由將曲線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)由點(diǎn)到直線(xiàn)距離公式,再求出的最小值的表達(dá)式,求出t的值。

試題解析(1)由曲線(xiàn)的參數(shù)方程,消去參數(shù),可得的普通方程為,

,化為極坐標(biāo)方程為,

由曲線(xiàn)的極坐標(biāo)方程),得),

∴曲線(xiàn)的直角坐標(biāo)方程為,即

(2)曲線(xiàn)的圓心到直線(xiàn)的距離,

的最小值為,解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a11anan1n2n≥2nN*.

1)求數(shù)列{an}的通項(xiàng)公式:

2)若對(duì)任意的nN*,不等式1≤man≤5恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省高考改革方案指出:該省高考考生總成績(jī)將由語(yǔ)文數(shù)學(xué)英語(yǔ)3門(mén)統(tǒng)一高考成績(jī)和學(xué)生從思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)等級(jí)性考試科目中自主選擇3個(gè),按獲得該次考試有效成績(jī)的考生(缺考考生或未得分的考生除外)總?cè)藬?shù)的相應(yīng)比例的基礎(chǔ)上劃分等級(jí),位次由高到低分為A、B、C、D、E五等21級(jí),該省的某市為了解本市萬(wàn)名學(xué)生的某次選考化學(xué)成績(jī)水平,統(tǒng)計(jì)在全市范圍內(nèi)選考化學(xué)的原始成績(jī),發(fā)現(xiàn)其成績(jī)服從正態(tài)分布 ,現(xiàn)從某校隨機(jī)抽取了名學(xué)生,將所得成績(jī)整理后,繪制出如圖所示的頻率分布直方圖.

(1)估算該校名學(xué)生成績(jī)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)現(xiàn)從該校名考生成績(jī)?cè)?/span>的學(xué)生中隨機(jī)抽取兩人,該兩人成績(jī)排名(從高到低)在全市前名的人數(shù)記為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.參考數(shù)據(jù):若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、分別是離心率為的橢圓的左、右焦點(diǎn),點(diǎn)是橢圓上異于其左、右頂點(diǎn)的任意一點(diǎn),過(guò)右焦點(diǎn)的外角平分線(xiàn)的垂線(xiàn),交于點(diǎn),且為坐標(biāo)原點(diǎn)).

(1)求橢圓的方程;

(2)若點(diǎn)在圓上,且在第一象限,過(guò)作圓的切線(xiàn)交橢圓于、兩點(diǎn),問(wèn):的周長(zhǎng)是否為定值?如果是,求出該定值;如果不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱的底面是平行四邊形,且,的中點(diǎn),平面,若,試求異面直線(xiàn)所成角的余弦值_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2-(a-1)x-a<0,a∈R},集合B={x|<0}.

(1)當(dāng)a=3時(shí),求A∩B;

(2)若A∪B=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年,隨著中國(guó)第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過(guò)數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬(wàn)臺(tái),其總成本為,其中固定成本為800萬(wàn)元,并且每生產(chǎn)1萬(wàn)臺(tái)的生產(chǎn)成本為1000萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷(xiāo)售收入萬(wàn)元滿(mǎn)足

1)將利潤(rùn)表示為產(chǎn)量萬(wàn)臺(tái)的函數(shù);

2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,傾斜角為的直線(xiàn)的參數(shù)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程是

(1)寫(xiě)出直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線(xiàn)經(jīng)過(guò)點(diǎn)且與曲線(xiàn)相交于,兩點(diǎn),求,兩點(diǎn)間的距離的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍是(  )

A. (1,2015)B. (1,2016)

C. [2,2 016]D. (2,2016)

查看答案和解析>>

同步練習(xí)冊(cè)答案