【題目】如圖,四棱柱的底面是平行四邊形,且,,的中點,平面,若,試求異面直線所成角的余弦值_________

【答案】

【解析】

BB1的中點F,連接EF、AF,則異面直線所成角為∠AEF(或其補角),在三角形△AEF中根據(jù)邊角關系得到答案.

BB1的中點F,連接EF、AF,連接B1C,

∵△BB1C中,EF是中位線,∴EFB1C

A1B1ABCD,A1B1ABCD,

∴四邊形ABCD是平行四邊形,可得B1CA1D

EFA1D,

可得∠AEF(或其補角)是異面直線AEA1D所成的角.

∵△CDE中,,∴DECDA1E,

AEAB1,

A1A,由此可得BF,AFEF,

cosAEF,即異面直線AEA1D所成角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】三國時期趙爽在《勾股方圓圖注》中,對勾股定理的證明可用現(xiàn)代數(shù)學表述為如圖所示,我們教材中利用該圖作為幾何解釋的是(

A.如果,那么

B.如果,那么

C.如果,那么

D.對任意實數(shù),有,當且僅當時,等號成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年滕州某企業(yè)計劃引進新能源汽車生產設備,通過市場分析,全年需投入固定成本2500萬元.每生產(百輛)新能源汽車,需另投入成本萬元,且.由市場調研知,每輛車售價5萬元,且生產的車輛當年能全部銷售完.

1)求出2019年的利潤(萬元)關于年產量(百輛)的函數(shù)關系式;(利潤=銷售-成本)

22019年產量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=a﹣(a∈R)

(Ⅰ)判斷函數(shù)f(x)在R上的單調性,并用單調函數(shù)的定義證明;

(Ⅱ)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,、、分別為角、的對邊,若.

1)判斷的形狀,并證明;

2)若,,為滿足題設條件的所有中線段上任意一點(可與端點重合),求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的極坐標方程和曲線的直角坐標方程;

(2)已知點是曲線上一點,點是曲線上一點,的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)如圖,在五面體ABCDEF中,四邊形EDCF是正方形,

(1)證明:

(2)已知四邊形ABCD是等腰梯形,且求五面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經市場調查,某商品每噸的價格為萬元時,該商品的月供給量為噸,;月需求量為噸,,當該商品的需求量大于供給量時,銷售量等于供給量;當該商品的需求量不大于供給量時,銷售量等于需求量,該商品的月銷售額等于月銷售量與價格的乘積.

1)已知,若某月該商品的價格為x=7,求商品在該月的銷售額(精確到1元);

2)記需求量與供給量相等時的價格為均衡價格,若該商品的均衡價格不低于每噸6萬元,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的焦點在軸上,虛軸長為4,且與雙曲線有相同漸近線.

1)求雙曲線的方程.

2)過點的直線與雙曲線的異支相交于兩點,若,求直線的方程.

查看答案和解析>>

同步練習冊答案