【題目】如圖,在直角坐標(biāo)中,設(shè)橢圓的左右兩個焦點分別為,過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.
(1)求橢圓的方程;
(2>已知經(jīng)過點且斜率為直線與橢圓有兩個不同的和交點,請問是否存在常數(shù),使得向量與共線?如果存在,求出的值;如果不存在,請說明理由.
【答案】(1) (2)不存在常數(shù),使得向量與共線.
【解析】試題分析:(1)由過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為 ,可得 ,再根據(jù)橢圓的定義以及勾股定理列方程求得 從而得 ,進(jìn)而可得橢圓的標(biāo)準(zhǔn)方程;(2)直線的方程為與橢圓方程聯(lián)立,可得,由,解得, 與共線等價于,根據(jù)韋達(dá)定理以及向量的坐標(biāo)運算法則可得關(guān)于的方程,解得,從而可得結(jié)論.
試題解析:(1)由橢圓定義可知.
由題意,.
又由△可知 ,,,
又,得.
橢圓的方程為.
(2)設(shè)直線的方程為,
代入橢圓方程,得.
整理,得 ①
因為直線與橢圓有兩個不同的交點和等價于,
解得.
設(shè),則=,
由①得 ②
又③
因為, 所以.
所以與共線等價于.
將②③代入上式,解得.
因為
所以不存在常數(shù),使得向量與共線.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,公差為d,且0<d<1,a5≠ (k∈Z),sin2a3+2sina5cosa5=sin2a7 , 函數(shù)f(x)=dsin(wx+4d)(w>0)滿足:在 上單調(diào)且存在 ,則w范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個,生產(chǎn)一個衛(wèi)兵需分鐘,生產(chǎn)一個騎兵需分鐘,生產(chǎn)一個傘兵需分鐘,已知總生產(chǎn)時間不超過小時,若生產(chǎn)一個衛(wèi)兵可獲利潤元,生產(chǎn)一個騎兵可獲利潤元,生產(chǎn)一個傘兵可獲利潤元.
(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);
(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖下圖①,等邊三角形ABC的邊長為2a,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊上的點,且滿足=k,現(xiàn)將△ABC沿CD翻折成直二面角ADCB,如圖下圖②.
(1)試判斷翻折后直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求二面角BACD的正切值.
① 、
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點到準(zhǔn)線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.
(1)若的坐標(biāo)為,求的值;
(2)設(shè)線段的中點為,點的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,AB=1,BC=,AA1=2,E是側(cè)棱BB1的中點.
(1)求證:A1E⊥平面AED;
(2)求二面角A﹣A1D﹣E的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x+a|﹣ lnx.
(1)當(dāng)a=0時,討論函數(shù)f(x)的單調(diào)性;
(2)若a<0,討論函數(shù)f(x)的極值點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com