【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為原點,離心率,其中一個焦點的坐標為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)當點在橢圓上運動時,設(shè)動點的運動軌跡為若點滿足: 其中是上的點.直線的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了 1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考:用最小二乘法求線性回歸方程系數(shù)公式 ,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖的莖葉圖是甲、乙兩人在4次模擬測試中的成績,其中一個數(shù)字被污損,則甲的平均成績不超過乙的平均成績的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象,若對滿足|f(x1)﹣g(x2)|=2的x1、x2有|x1﹣x2|min= ,則φ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班50位同學(xué)周考數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(1)求圖中[80,90)的矩形高的值,并估計這50人周考數(shù)學(xué)的平均成績;
(2)根據(jù)直方圖求出這50人成績的眾數(shù)和中位數(shù)(精確到0.1);
(3)從成績在[40,60)的學(xué)生中隨機選取2人,求這2人成績分別在[40,50)、[50,60)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣ cos2x
(1)求函數(shù)的最小正周期及函數(shù)圖象的對稱中心;
(2)若不等式﹣2<f(x)﹣m<2在x∈[ ]上恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了參加第二屆全國數(shù)學(xué)建模競賽,長郡中學(xué)在高二年級舉辦了一次選拔賽,共有60名高二學(xué)生報名參加,按照不同班級統(tǒng)計參賽人數(shù),如表所示:
班級 | 宏志班 | 珍珠班 | 英才班 | 精英班 |
參賽人數(shù) | 20 | 15 | 15 | 10 |
(Ⅰ)從這60名高二學(xué)生中隨機選出2人,求這2人在同一班級的概率;
(Ⅱ)現(xiàn)從這60名高二學(xué)生中隨機選出2人作為代表,進行大賽前的發(fā)言,設(shè)選出的2人中宏志班的學(xué)生人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com