過雙曲線
左焦點
且傾斜角為
的直線交雙曲線右支于點
,若線段
的中點
落在
軸上,則此雙曲線的離心率為( )
試題分析:因為線段
的中點
落在
軸上,故
點與原點的連線為
的中位線,則
軸,故
,
,即
,等式兩邊同除
得
,所以
(舍去)或
,故選D.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,直線
是直線上的線段,且
是橢圓上一點,求
面積的最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓
的右焦點為
,直線
與
軸交于點
,若
(其中
為坐標原點).
(1)求橢圓
的方程;
(2)設
是橢圓
上的任意一點,
為圓
的任意一條直徑(
、
為直徑的兩個端點),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知雙曲線
的一條漸近線方程是
,它的一個焦點在拋物線
的準線上,點
是雙曲線
右支上相異兩點,且滿足
為線段
的中點,直線
的斜率為
(1)求雙曲線
的方程;
(2)用
表示點
的坐標;
(3)若
,
的中垂線交
軸于點
,直線
交
軸于點
,求
的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
C:
=1(
a>
b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關系,直線
l:
x-
y+
=0與以原點為圓心, 以橢圓
C的短半軸長為半徑的圓相切.
(1)求橢圓
C的方程;
(2)設
M是橢圓的上頂點,過點
M分別作直線
MA,
MB交橢圓于
A,
B兩點,設兩直線的斜率分別為
k1,
k2,且
k1+
k2=4,證明:直線
AB過定點
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知△
的兩個頂點
的坐標分別是
,
,且
所在直線的斜率之積等于
.
(1)求頂點
的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(2)當
時,過點
的直線
交曲線
于
兩點,設點
關于
軸的對稱點為
(
不重合), 試問:直線
與
軸的交點是否是定點?若是,求出定點,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
為橢圓
上的三個點,
為坐標原點.
(1)若
所在的直線方程為
,求
的長;
(2)設
為線段
上一點,且
,當
中點恰為點
時,判斷
的面積是否為常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知曲線
:
.
(1)若曲線
是焦點在
軸上的橢圓,求
的取值范圍;
(2)設
,過點
的直線
與曲線
交于
,
兩點,
為坐標原點,若
為直角,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖平面直角坐標系
中,橢圓
的離心率
,
分別是橢圓的左、右兩個頂點,圓
的半徑為
,過點
作圓
的切線,切點為
,在
軸的上方交橢圓于點
.則
.
查看答案和解析>>