【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)若直線l的極坐標(biāo)方程是 ,射線 與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q.求線段PQ的長(zhǎng).

【答案】
(1)解:利用cos2φ+sin2φ=1,把圓C的參數(shù)方程 (θ為參數(shù)),化為(x﹣1)2+y2=1,

∴ρ2﹣2ρcosθ=0,即ρ=2cosθ


(2)解:設(shè)(ρ1,θ1)為點(diǎn)P的極坐標(biāo),則P(1, ).

由直線l的極坐標(biāo)方程是 ,可得Q(3, ),

∴|PQ|=|ρ1﹣ρ2|=2


【解析】(1)利用cos2φ+sin2φ=1,即可把圓C的參數(shù)方程化為直角坐標(biāo)方程.(2)求出點(diǎn)P、Q的極坐標(biāo),利用|PQ|=|ρ1﹣ρ2|即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 某汽車租賃公司為了調(diào)查A, B兩種車型的出租情況,現(xiàn)隨機(jī)抽取這兩種車型各50輛,分別統(tǒng)計(jì)了每輛車在某個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表:

A型車

出租天數(shù)

3

4

5

6

7

車輛數(shù)

3

30

5

7

5

B型車

出租天數(shù)

3

4

5

6

7

車輛數(shù)

10

10

15

10

5

(1)試根據(jù)上面的統(tǒng)計(jì)數(shù)據(jù),判斷這兩種車型在本星期內(nèi)出租天數(shù)的方差的大小關(guān)系(只需寫出結(jié)果);

(2)現(xiàn)從出租天數(shù)為3天的汽車(僅限A, B兩種車型)中隨機(jī)抽取一輛,試估計(jì)這輛汽車是A型車的概率;

(3)如果兩種車型每輛車每天出租獲得的利潤(rùn)相同,該公司需要購(gòu)買一輛汽車,請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),給出建議應(yīng)該購(gòu)買哪一種車型,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前n項(xiàng)和為 , ,數(shù)列滿足: , , ,數(shù)列的前n項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(2)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(3)記集合,若M的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個(gè)題目:“今有蒲生一日,長(zhǎng)三尺;莞生一日,長(zhǎng)一尺.蒲生日自半,莞生日自倍.問(wèn)幾何日而長(zhǎng)等?”.其大意是“今有蒲生長(zhǎng)1日,長(zhǎng)為3尺;莞生長(zhǎng)1日,長(zhǎng)為1尺.蒲的生長(zhǎng)逐日減其一半,莞的生長(zhǎng)逐日增加一倍.問(wèn)幾日蒲、莞長(zhǎng)度相等?”若本題改為求當(dāng)蒲、莞長(zhǎng)度相等時(shí),莞的長(zhǎng)度為( )

A. 4尺B. 5尺C. 6尺D. 7尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,對(duì)角線AC,BD垂直相交于點(diǎn)O,且OA=OB=OD=4,OC=3. 將△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小為90°(如圖).已知Q為EO的中點(diǎn),點(diǎn)P在線段AB上,且
(Ⅰ)證明:直線PQ∥平面ADE;
(Ⅱ)求直線BD與平面ADE所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行六面體中,

求證:(1);

(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸出T=6,那么判斷框內(nèi)應(yīng)填入的條件是(
A.k<32
B.k<33
C.k<64
D.k<65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: ,圓Q:x2+y2﹣4x﹣2y+3=0的圓心Q在橢圓C上,點(diǎn)P(0,1)到橢圓C的右焦點(diǎn)的距離為2.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)P作直線l交橢圓C于A,B兩點(diǎn),若SAQB=tan∠AQB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面上,將兩個(gè)半圓弧、兩條直線圍成的封閉圖形記為,如圖中陰影部分.記軸旋轉(zhuǎn)一周而成的幾何體為,過(guò)的水平截面,所得截面面積為,試?yán)米鏁溤恚ㄗ鏁溤恚骸皟鐒?shì)既同,則積不容異”,意思是:兩等高的幾何體在同高處被截得的兩個(gè)截面面積均相等,那么這兩個(gè)幾何體的體積相等)、一個(gè)平放的圓柱和一個(gè)長(zhǎng)方體,得出的體積值為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案