【題目】某共享單車經(jīng)營企業(yè)欲向甲市投放單車,為制定適宜的經(jīng)營策略,該企業(yè)首先在已投放單車的乙市進行單車使用情況調(diào)查.調(diào)查過程分隨機問卷、整理分析及開座談會三個階段.在隨機問卷階段,A,B兩個調(diào)查小組分赴全市不同區(qū)域發(fā)放問卷并及時收回;在整理分析階段,兩個調(diào)查小組從所獲取的有效問卷中,針對15至45歲的人群,按比例隨機抽取了300份,進行了數(shù)據(jù)統(tǒng)計,具體情況如下表:

組別

年齡

A組統(tǒng)計結(jié)果

B組統(tǒng)計結(jié)果

經(jīng)常使用單車

偶爾使用單車

經(jīng)常使用單車

偶爾使用單車

27人

13人

40人

20人

23人

17人

35人

25人

20人

20人

35人

25人

(1)先用分層抽樣的方法從上述300人中按“年齡是否達到35歲”抽出一個容量為60人的樣本,再用分層抽樣的方法將“年齡達到35歲”的被抽個體數(shù)分配到“經(jīng)常使用單車”和“偶爾使用單車”中去.求這60人中“年齡達到35歲且偶爾使用單車”的人數(shù);

(2)從統(tǒng)計數(shù)據(jù)可直觀得出“是否經(jīng)常使用共享單車與年齡(記作歲)有關(guān)”的結(jié)論.在用獨立性檢驗的方法說明該結(jié)論成立時,為使犯錯誤的概率盡可能小,年齡應(yīng)取25還是35?請通過比較的觀測值的大小加以說明.

參考公式:,其中.

【答案】(1)9;(2)m=25

【解析】

(1)根據(jù)表格,先求得年齡達到35歲的人數(shù),再求得偶爾使用單車的人數(shù);

2)分別求得當m=25m=35時,的觀測值,然后作比較即可得出結(jié)論.

(1)年齡達到35歲:,年齡達到35歲且偶爾使用單車:.

(2)m=25時,

經(jīng)常使用單車

偶爾使用單車

合計

<25

67

33

100

25

113

87

200

合計

180

120

300

M=35時

經(jīng)常使用單車

偶爾使用單車

合計

35

125

75

200

35

55

45

100

合計

180

120

300

其中3.0625>1.5625

所以當m=25時,犯錯誤的概率更小

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在我國,大學生就業(yè)壓力日益嚴峻,伴隨著政府政策引導與社會觀念的轉(zhuǎn)變,大學生創(chuàng)業(yè)意識,就業(yè)方向也悄然發(fā)生轉(zhuǎn)變.某大學生在國家提供的稅收,擔保貸款等很多方面的政策扶持下選擇加盟某專營店自主創(chuàng)業(yè),該專營店統(tǒng)計了近五年來創(chuàng)收利潤數(shù)(單位:萬元)與時間(單位:年)的數(shù)據(jù),列表如下:

(Ⅰ)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合的關(guān)系,請計算相關(guān)系數(shù)并加以說明(計算結(jié)果精確到).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);

附:相關(guān)系數(shù)公式

參考數(shù)據(jù).

(Ⅱ)該專營店為吸引顧客,特推出兩種促銷方案.

方案一:每滿元可減元;

方案二:每滿元可抽獎一次,每次中獎的概率都為,中獎就可以獲得元現(xiàn)金獎勵,假設(shè)顧客每次抽獎的結(jié)果相互獨立.

①某位顧客購買了元的產(chǎn)品,該顧客選擇參加兩次抽獎,求該顧客獲得元現(xiàn)金獎勵的概率.

②某位顧客購買了元的產(chǎn)品,作為專營店老板,是希望該顧客直接選擇返回元現(xiàn)金,還是選擇參加三次抽獎?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為菱形,且是等邊三角形,點是側(cè)面內(nèi)的一個動點,且滿足,則點所形成的軌跡長度是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知一個動點M在圓上移動,它與定點所連線段的中點為P.

1)求點P的軌跡方程.

2)過定點的直線與點P的軌跡交于A,B兩點,求弦AB的中點C的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線處的切線方程;

(Ⅱ)求上的單調(diào)區(qū)間;

(Ⅲ)當時,證明:上存在最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐的底面ABCD是菱形,且,是等邊三角形.

(Ⅰ)證明:;

(Ⅱ)若平面平面ABCD,求二面的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD為梯形,ABCD,∠DAB=90°,BDD1B1為矩形,平面BDD1B1⊥平面ABCD,又AB=AD=BB1=1,CD=2.

(1)證明:CB1AD1

(2)求B1到平面ACD1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面四邊形ABCD中,E、FAD、BD中點,ABADCD=2, BD=2 ,∠BDC=90°,將△ABD沿對角線BD折起至△,使平面⊥平面BCD,則四面體中,下列結(jié)論不正確是 ( )

A. EF∥平面

B. 異面直線CD所成的角為90°

C. 異面直線EF所成的角為60°

D. 直線與平面BCD所成的角為30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長是短軸長的倍,點在橢圓.

1)求橢圓的方程;

2)若過橢圓的左焦點的直線與橢圓相交所得弦長為,求直線的斜率;

3)過點的任意直線與橢圓交于、兩點,設(shè)點到直線的距離分別為.,求的值.

查看答案和解析>>

同步練習冊答案