如圖,已知AB是⊙O的直徑,CD是⊙O的切線,C為切點(diǎn),連接AC,過點(diǎn)A作AD⊥CD于點(diǎn)D,交⊙O于點(diǎn)E.
(Ⅰ)證明:∠AOC=2∠ACD;
(Ⅱ)證明:AB•CD=AC•CE.
考點(diǎn):與圓有關(guān)的比例線段,弦切角
專題:直線與圓
分析:(Ⅰ)連結(jié)BC,由已知條件推導(dǎo)出∠ACD=∠ABC,∠OCB=∠ABC,由此能夠證明∠AOC=2∠ACD.
(Ⅱ)由已知條件推導(dǎo)出OAC=∠OCA=∠CAE=∠ECD,從而得到Rt△ABC∽R(shí)t△CED,由此能夠證明AB•CD=AC•CE.
解答: 證明:(Ⅰ)連結(jié)BC,∵CD是⊙O的切線,C為切點(diǎn),
∴∠ACD=∠ABC,
∵OB=OC,∴∠OCB=∠ABC,
又∵∠AOC=∠OCB+∠OBC,
∴∠AOC=2∠ACD.
(Ⅱ)∵AB是⊙O的直徑,∴∠ACB=90°,
又∵AD⊥CD于D,∴∠ADC=90°,
∵CD是⊙O的切線,C為切點(diǎn),OC為半徑,
∴∠OAC=∠CAE,且OC⊥CD,
∴OC∥AD,又∵OC=OA,
∴∠OAC=∠OCA=∠CAE=∠ECD,
∴Rt△ABC∽R(shí)t△CED,∴
AB
CE
=
AC
CD

∴AB•CD=AC•CE.
點(diǎn)評(píng):本題考查角相等的證明,考查線段乘積相等的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的簡(jiǎn)單性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表,
x -1 0 4 5
f(x) 1 2 2 1
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.下列關(guān)于f(x)的命題:
①函數(shù)f(x)的極大值點(diǎn)為0,4;
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④函數(shù)y=f(x)最多有2個(gè)零點(diǎn).
其中正確命題的序號(hào)是( 。
A、①②B、③④
C、①②④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義域?yàn)閇0,1]的函數(shù)f(x),如果同時(shí)滿足以下三個(gè)條件:
①對(duì)任意的x∈[0,1],總有f(x)≥0     
②f(1)=1
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立;
則稱函數(shù)f(x)為理想函數(shù).
下面有三個(gè)命題:
(1)若函數(shù)f(x)為理想函數(shù),則f(0)=0;
(2)函數(shù)f(x)=2x-l(x∈[0.1])是理想函數(shù);
(3)若函數(shù)f(x)是理想函數(shù),假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,則f(x0)=x0;    
其中正確的命題個(gè)數(shù)有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=
8
x2-5x+4
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)P到兩圓C1與C2的圓心的距離之和等于4,其中C1:x2+y2-2
3
y+2=0,C2:x2+y2+2
3
y-3=0.設(shè)點(diǎn)P的軌跡為C.
(1)求C的方程;
(2)設(shè)直線y=kx+1與C交于A,B兩點(diǎn).問k為何值時(shí)
OA
OB
?此時(shí)|
AB
|的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py過點(diǎn)P(1,
1
2
)
,直線l交C于A,B兩點(diǎn),過點(diǎn)P且平行于y軸的直線分別與直線l和x軸相交于點(diǎn)M,N.
(1)求p的值;
(2)是否存在定點(diǎn)Q,當(dāng)直線l過點(diǎn)Q時(shí),△PAM與△PBN的面積相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域:
(1)y=5 x2+2x+3;
(2)y=(
1
2
 -x2-2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊長分別為a,b,c,且cos
A+C
2
=
1
2

(1)若a=3,b=
7
,求c的值;
(2)若f(A)=sinA(
3
cosA-sinA),求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以下四個(gè)命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個(gè)實(shí)根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2};
②若
x-1
x-2
≤0
,則(x-1)(x-2)≤0;
③“若m>2,則x2-2x+m>0的解集是實(shí)數(shù)集R”的逆否命題;
④若函數(shù)f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中為真命題的是
 
.(填上你認(rèn)為正確的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案