【題目】設(shè)不等式組 表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離小于1的概率是( )
A.
B.
C.
D.
【答案】A
【解析】解:到坐標(biāo)原點(diǎn)的距離小于1的點(diǎn),位于以原點(diǎn)O為圓心、半徑為1的圓內(nèi),
區(qū)域D:設(shè)不等式組 表示的平面區(qū)域?yàn)镈,是表示正方形OABC,(如圖)
其中O為坐標(biāo)原點(diǎn),A(1,0),B(1,1),C(0,1).
因此在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn)P,
則P點(diǎn)到坐標(biāo)原點(diǎn)的距離大于1時(shí),點(diǎn)P位于圖中正方形OABC內(nèi),
且在扇形OAC的內(nèi)部,如圖中的扇形部分
∵S正方形OABC=12=1,S扇形= π12= ,所求概率為P= = ,
故選:A.
根據(jù)題意,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn)P,則P點(diǎn)到坐標(biāo)原點(diǎn)的距離小于1時(shí),點(diǎn)P位于圖中正方形OABC內(nèi),且在扇形OAC的內(nèi)部,如圖中的扇形部分.因此算出圖中扇形部分面積,再除以正方形OABC面積,即可求得本題的答案
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某中學(xué)高三文科班學(xué)生共有人參加了數(shù)學(xué)與地理的水平測(cè)試,現(xiàn)學(xué)校決定利用隨機(jī)數(shù)表法從中抽取人進(jìn)行成績(jī)抽樣統(tǒng)計(jì),先將人按進(jìn)行編號(hào).
(Ⅰ)如果從第行第列的數(shù)開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢測(cè)的個(gè)人的編號(hào);(下面摘取了第行 至第行)
(Ⅱ)抽的人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚?/span>
人數(shù) | 數(shù)學(xué) | |||
優(yōu)秀 | 良好 | 及格 | ||
地 理 | 優(yōu)秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | 4 |
成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí),橫向、縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?/span>人,若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率為,求的值.
(Ⅲ)將的表示成有序數(shù)對(duì),求“在地理成績(jī)?yōu)榧案竦膶W(xué)生中,數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少”的數(shù)對(duì)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形為梯形, , , 為等邊三角形, .
(1)求證:平面平面;
(2)求二面角大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校對(duì)甲、乙兩個(gè)班級(jí)進(jìn)行了物理測(cè)驗(yàn),成績(jī)統(tǒng)計(jì)如下(每班50人):
(1)估計(jì)甲班的平均成績(jī);
(2)成績(jī)不低于80分記為“優(yōu)秀”.請(qǐng)完成下面的列聯(lián)表,并判斷是否有85%的把握認(rèn)為:“成績(jī)優(yōu)秀”與所在教學(xué)班級(jí)有關(guān)?
(3)從兩個(gè)班級(jí),成績(jī)?cè)?/span>的學(xué)生中任選2人,記事件為“選出的2人中恰有1人來(lái)自甲班”.求事件的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 是圓柱的上、下底面圓的直徑, 是邊長(zhǎng)為2的正方形, 是底面圓周上不同于兩點(diǎn)的一點(diǎn), .
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品,已知生產(chǎn)甲產(chǎn)品1桶需耗原料2千克, 原料3千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克, 原料1千克,每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元,公司在要求每天消耗原料都不超過(guò)12千克的條件下,生產(chǎn)產(chǎn)品、產(chǎn)品的利潤(rùn)之和的最大值為( )
A. 1800元 B. 2100元 C. 2400元 D. 2700元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知具有相關(guān)關(guān)系的兩個(gè)變量之間的幾組數(shù)據(jù)如下表所示:
(1)請(qǐng)根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)當(dāng)時(shí), 的值;
(3)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),則從這五個(gè)點(diǎn)中隨機(jī)抽取3個(gè)點(diǎn),記落在直線右下方的點(diǎn)的個(gè)數(shù)為,求的分布列以及期望.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為,且橢圓過(guò)點(diǎn),記橢圓的左、右頂點(diǎn)分別為,點(diǎn)是橢圓上異于的點(diǎn),直線與直線分別交于點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作橢圓的切線,記,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是二次函數(shù),若f(0)=0且f(x+1)﹣f(x)=x+1,求函數(shù)f(x)的解析式,并求出它在區(qū)間[﹣1,3]上的最大、最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com