【題目】已知函數(shù),),其圖像與直線相鄰兩個(gè)交點(diǎn)的距離為,若對于任意的恒成立, 則的取值范圍是( )

A. B. C. D.

【答案】D

【解析】

由題意可得函數(shù)的周期為=π,求得ω=2.再根據(jù)當(dāng)x∈(﹣)時(shí),sin(2x+φ)>0恒成立,2kπ<2(﹣)+φ<2+φ<2kπ+π,由此求得φ的取值范圍.

函數(shù)f(x)=2sin(ωx+φ)+1,其圖象與直線y=-1相鄰兩個(gè)交點(diǎn)的距離為π,故函數(shù)的周期為=π,所以ω=2,于是f(x)=2sin(2x+φ)+1.

f(x)>1對x恒成立,即當(dāng)x時(shí),sin(2x+φ)>0恒成立,

則有2kπ≤2·+φ<2·+φ≤2kπ+π,求得2kπ+≤φ≤2kπ+,k∈Z,又|φ|≤,所以≤φ≤.

故答案為:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2.

(1)證明:AG∥平面BDE;
(2)求二面角E﹣BD﹣G的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐S-ABCD的底面ABCD為直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD為正三角形.

(Ⅰ)點(diǎn)M為棱AB上一點(diǎn),若BC∥平面SDM,AM=λAB,求實(shí)數(shù)λ的值;

(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.

【答案】(Ⅰ)(Ⅱ)

【解析】

由線面平行的性質(zhì)定理可得,據(jù)此可知四邊形BCDM為平行四邊形,據(jù)此可得.

由幾何關(guān)系,在平面內(nèi)過點(diǎn)直線于點(diǎn),以點(diǎn)E為坐標(biāo)原點(diǎn),EA方向?yàn)?/span>X軸,EC方向?yàn)?/span>Y軸,ES方向?yàn)?/span>Z軸建立空間坐標(biāo)系,據(jù)此可得平面的一個(gè)法向量,平面的一個(gè)法向量,據(jù)此計(jì)算可得二面角余弦值為.

Ⅰ)因?yàn)?/span>平面SDM, 平面ABCD,平面SDM 平面ABCD=DM,所以,

因?yàn)?/span>,所以四邊形BCDM為平行四邊形,又,所以MAB的中點(diǎn).

因?yàn)?/span> .

Ⅱ)因?yàn)?/span> , ,所以平面,又因?yàn)?/span>平面,

所以平面平面,平面平面,

在平面內(nèi)過點(diǎn)直線于點(diǎn),則平面,

中,因?yàn)?/span>,所以

又由題知,所以所以

以下建系求解.以點(diǎn)E為坐標(biāo)原點(diǎn),EA方向?yàn)?/span>X軸,EC方向?yàn)?/span>Y軸,ES方向?yàn)?/span>Z軸建立如圖所示空間坐標(biāo)系,

,,,,

,,,,

設(shè)平面的法向量,則,所,

為平面的一個(gè)法向量,

同理得為平面的一個(gè)法向量,

,因?yàn)槎娼?/span>為鈍角.

所以二面角余弦值為.

【點(diǎn)睛】

本題考查了立體幾何中的判斷定理和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴(yán)密推理,明確角的構(gòu)成.同時(shí)對于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.

型】解答
結(jié)束】
19

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒有獎(jiǎng)勵(lì),超過55單的部分每單獎(jiǎng)勵(lì)12元.

(Ⅰ)請分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關(guān)系式;

(Ⅱ)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在(]n=1,2,3,4,5)時(shí),日平均派送量為50+2n單.若將頻率視為概率,回答下列問題:

①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數(shù)學(xué)期望及方差;

②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由。

(參考數(shù)據(jù):0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某路段最高限速60km/h,電子監(jiān)控測得連續(xù)6輛汽車的速度用莖葉圖表示如下(單位:km/h).若從中任取2輛,則恰好有1輛汽車超速的概率為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是某廠生產(chǎn)某種產(chǎn)品的過程中記錄的幾組數(shù)據(jù),其中表示產(chǎn)量(單位:噸),表示生產(chǎn)中消耗的煤的數(shù)量(單位:噸).

(1)試在給出的坐標(biāo)系下作出散點(diǎn)圖,根據(jù)散點(diǎn)圖判斷,在中,哪一個(gè)方程更適合作為變量關(guān)于的回歸方程模型?(給出判斷即可,不需要說明理由)

(2)根據(jù)(1)的結(jié)果以及表中數(shù)據(jù),建立變量關(guān)于的回歸方程.并估計(jì)生產(chǎn)噸產(chǎn)品需要準(zhǔn)備多少噸煤.參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某房地產(chǎn)開發(fā)商為吸引更多消費(fèi)者購房,決定在一塊閑置的扇形空地中修建一個(gè)花園.如圖,已知扇形AOB的圓心角∠AOB=,半徑為R.現(xiàn)欲修建的花園為OMNH,其中M,H分別在OA,OB,N.設(shè)∠MON=θ,OMNH的面積為S.

(1)S表示為關(guān)于θ的函數(shù);

(2)S的最大值及相應(yīng)的θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|+|x+2|.

(1)當(dāng)a=1 時(shí),求不等式f(x)≤5的解集;

(2)x0∈R,f(x0)≤|2a+1|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的單調(diào)性;

(2)若,當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售某種品牌的空調(diào)器,每周周初購進(jìn)一定數(shù)量的空調(diào)器,商場每銷售一臺(tái)空調(diào)器可獲利500元,若供大于求,則每臺(tái)多余的空調(diào)器需交保管費(fèi)100元;若供不應(yīng)求,則可從其他商店調(diào)劑供應(yīng),此時(shí)每臺(tái)空調(diào)器僅獲利潤200元.
(Ⅰ)若該商場周初購進(jìn)20臺(tái)空調(diào)器,求當(dāng)周的利潤(單位:元)關(guān)于當(dāng)周需求量n(單位:臺(tái),n∈N)的函數(shù)解析式f(n);
(Ⅱ)該商場記錄了去年夏天(共10周)空調(diào)器需求量n(單位:臺(tái)),整理得表:

周需求量n

18

19

20

21

22

頻數(shù)

1

2

3

3

1

以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進(jìn)20臺(tái)空調(diào)器,X表示當(dāng)周的利潤(單位:元),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案