【題目】四棱錐S-ABCD的底面ABCD為直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD為正三角形.

(Ⅰ)點(diǎn)M為棱AB上一點(diǎn),若BC∥平面SDM,AM=λAB,求實(shí)數(shù)λ的值;

(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.

【答案】(Ⅰ)(Ⅱ)

【解析】

由線面平行的性質(zhì)定理可得,據(jù)此可知四邊形BCDM為平行四邊形,據(jù)此可得.

由幾何關(guān)系,在平面內(nèi)過(guò)點(diǎn)直線于點(diǎn),以點(diǎn)E為坐標(biāo)原點(diǎn),EA方向?yàn)?/span>X軸,EC方向?yàn)?/span>Y軸,ES方向?yàn)?/span>Z軸建立空間坐標(biāo)系,據(jù)此可得平面的一個(gè)法向量,平面的一個(gè)法向量,據(jù)此計(jì)算可得二面角余弦值為.

Ⅰ)因?yàn)?/span>平面SDM, 平面ABCD,平面SDM 平面ABCD=DM,所以

因?yàn)?/span>,所以四邊形BCDM為平行四邊形,又,所以MAB的中點(diǎn).

因?yàn)?/span> .

Ⅱ)因?yàn)?/span> , ,所以平面,又因?yàn)?/span>平面,

所以平面平面,平面平面,

在平面內(nèi)過(guò)點(diǎn)直線于點(diǎn),則平面,

中,因?yàn)?/span>,所以,

又由題知,所以所以,

以下建系求解.以點(diǎn)E為坐標(biāo)原點(diǎn),EA方向?yàn)?/span>X軸,EC方向?yàn)?/span>Y軸,ES方向?yàn)?/span>Z軸建立如圖所示空間坐標(biāo)系,

,,,,,

,,,

設(shè)平面的法向量,則,所,

為平面的一個(gè)法向量,

同理得為平面的一個(gè)法向量,

,因?yàn)槎娼?/span>為鈍角.

所以二面角余弦值為.

【點(diǎn)睛】

本題考查了立體幾何中的判斷定理和二面角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過(guò)嚴(yán)密推理,明確角的構(gòu)成.同時(shí)對(duì)于立體幾何中角的計(jì)算問(wèn)題,往往可以利用空間向量法,通過(guò)求解平面的法向量,利用向量的夾角公式求解.

型】解答
結(jié)束】
19

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒(méi)有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元.

(Ⅰ)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關(guān)系式;

(Ⅱ)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在(,]n=1,2,3,4,5)時(shí),日平均派送量為50+2n單.若將頻率視為概率,回答下列問(wèn)題:

①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數(shù)學(xué)期望及方差;

②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說(shuō)明你的理由。

(參考數(shù)據(jù):0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)

【答案】甲方案的函數(shù)關(guān)系式為: ,乙方案的函數(shù)關(guān)系式為:(Ⅱ)①見(jiàn)解析,②見(jiàn)解析.

【解析】

由題意可得甲方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為: , 乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:.

①由題意求得X的分布列,據(jù)此計(jì)算可得,,.

②答案一:由以上的計(jì)算可知,遠(yuǎn)小于,即甲方案日工資收入波動(dòng)相對(duì)較小,所以小明應(yīng)選擇甲方案.

答案二:由以上的計(jì)算結(jié)果可以看出,,所以小明應(yīng)選擇乙方案.

Ⅰ)甲方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為: ,

乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:

①由已知,在這100天中,該公司派送員日平均派送單數(shù)滿足如下表格:

單數(shù)

52

54

56

58

60

頻率

0.2

0.3

0.2

0.2

0.1

所以的分布列為:

152

154

156

158

160

0.2

0.3

0.2

0.2

0.1

所以

所以的分布列為:

140

152

176

200

0.5

0.2

0.2

0.1

所以

②答案一:由以上的計(jì)算可知,雖然,但兩者相差不大,且遠(yuǎn)小于,即甲方案日工資收入波動(dòng)相對(duì)較小,所以小明應(yīng)選擇甲方案.

答案二:由以上的計(jì)算結(jié)果可以看出,,即甲方案日工資期望小于乙方案日工資期望,所以小明應(yīng)選擇乙方案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年兩會(huì)繼續(xù)關(guān)注了鄉(xiāng)村教師的問(wèn)題,隨著城鄉(xiāng)發(fā)展失衡,鄉(xiāng)村教師待遇得不到保障,流失現(xiàn)象嚴(yán)重,教師短缺會(huì)嚴(yán)重影響鄉(xiāng)村孩子的教育問(wèn)題,為此,某市今年要為某所鄉(xiāng)村中學(xué)招聘儲(chǔ)備未來(lái)三年的教師,現(xiàn)在每招聘一名教師需要2萬(wàn)元,若三年后教師嚴(yán)重短缺時(shí)再招聘,由于各種因素,則每招聘一名教師需要5萬(wàn)元,已知現(xiàn)在該鄉(xiāng)村中學(xué)無(wú)多余教師,為決策應(yīng)招聘多少鄉(xiāng)村教師搜集并整理了該市100所鄉(xiāng)村中學(xué)在過(guò)去三年內(nèi)的教師流失數(shù),得到如下的柱狀圖:記x表示一所鄉(xiāng)村中學(xué)在過(guò)去三年內(nèi)流失的教師數(shù),y表示一所鄉(xiāng)村中學(xué)未來(lái)四年內(nèi)在招聘教師上所需的費(fèi)用(單位:萬(wàn)元),n表示今年為該鄉(xiāng)村中學(xué)招聘的教師數(shù),為保障鄉(xiāng)村孩子教育不受影響,若未來(lái)三年內(nèi)教師有短缺,則第四年馬上招聘.

(1)若n=19,求yx的函數(shù)解析式;

(2)若要求“流失的教師數(shù)不大于n”的頻率不小于0.5,求n的最小值;

(3)假設(shè)今年該市為這100所鄉(xiāng)村中學(xué)的每一所都招聘了19個(gè)教師或20個(gè)教師,分別計(jì)算該市未來(lái)四年內(nèi)為這100所鄉(xiāng)村中學(xué)招聘教師所需費(fèi)用的平均數(shù),以此作為決策依據(jù),今年該鄉(xiāng)村中學(xué)應(yīng)招聘19名還是20名教師?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(2cosx,t)(t∈R), =(sinx﹣cosx,1),函數(shù)y=f(x)= ,將y=f(x)的圖象向左平移 個(gè)單位長(zhǎng)度后得到y(tǒng)=g(x)的圖象且y=g(x)在區(qū)間[0, ]內(nèi)的最大值為
(1)求t的值及y=f(x)的最小正周期;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若 g( )=﹣1,a=2,求BC邊上的高的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)求在區(qū)間上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情況如上:

所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.

(Ⅱ)當(dāng),即時(shí),函數(shù)上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時(shí),

由(Ⅰ)知上單調(diào)遞減,在上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時(shí),函數(shù)上單調(diào)遞減,

所以在區(qū)間上的最小值為.

綜上,當(dāng)時(shí),的最小值為;

當(dāng)時(shí),的最小值為

當(dāng)時(shí),的最小值為.

型】解答
結(jié)束】
19

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).

1)求的方程;

2)若點(diǎn)上,過(guò)的兩弦,若,求證: 直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)直角三角形的三個(gè)頂點(diǎn)分別在底面棱長(zhǎng)為2的正三棱柱的側(cè)棱上,則該直角三角形斜邊的最小值為__________

【答案】

【解析】如圖,不妨設(shè)處, ,
則有
該直角三角形斜邊

故答案為.

型】填空
結(jié)束】
16

【題目】已知函數(shù)f(x)=,g(x)=,若函數(shù)y=f(g(x))+a有三個(gè)不同的零點(diǎn)x1,x2,x3(其中x1<x2<x3),則2g(x1)+g(x2)+g(x3)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的三棱錐ABC﹣A1B1C1中,AA1⊥底面ABC,D,E分別是BC,A1B1的中點(diǎn).

(1)求證:DE∥平面ACC1A1;
(2)若AB⊥BC,AB=BC,∠ACB1=60°,求直線BC與平面AB1C所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=sinx﹣cosx,x∈[0,+∞).
(1)證明: ;
(2)證明:當(dāng)a≥1時(shí),f(x)≤eax﹣2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),其圖像與直線相鄰兩個(gè)交點(diǎn)的距離為,若對(duì)于任意的恒成立, 則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(2,0),半徑為 ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.,直線l的參數(shù)方程為: (t為參數(shù)).
(1)求圓C和直線l的極坐標(biāo)方程;
(2)點(diǎn)P的極坐標(biāo)為(1, ),直線l與圓C相交于A,B,求|PA|+|PB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案