【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求在區(qū)間上的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ).
令,得.
與的情況如上:
所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.
(Ⅱ)當(dāng),即時,函數(shù)在上單調(diào)遞增,
所以在區(qū)間上的最小值為.
當(dāng),即時,
由(Ⅰ)知在上單調(diào)遞減,在上單調(diào)遞增,
所以在區(qū)間上的最小值為.
當(dāng),即時,函數(shù)在上單調(diào)遞減,
所以在區(qū)間上的最小值為.
綜上,當(dāng)時,的最小值為;
當(dāng)時,的最小值為;
當(dāng)時,的最小值為.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線的頂點在原點,焦點在坐標(biāo)軸上,點為拋物線上一點.
(1)求的方程;
(2)若點在上,過作的兩弦與,若,求證: 直線過定點.
【答案】(1)或;(2)證明見解析.
【解析】試題分析:(1)當(dāng)焦點在軸時,設(shè)的方程為,當(dāng)焦點在軸時,設(shè)的方程為,分別代入點,求得的值,即可得到拋物線的方程;(2)因為點在上,所以曲線
的方程為,設(shè)點,用直線與曲線方程聯(lián)立,利用韋達定理整理得到,即可得到,判定直線過定點.
試題解析:(1)當(dāng)焦點在軸時,設(shè)的方程為,代人點得,即.當(dāng)焦點在軸時,設(shè)的方程為,代人點得,即,
綜上可知: 的方程為或.
(2)因為點在上,所以曲線的方程為.
設(shè)點,
直線,顯然存在,聯(lián)立方程有: .,
即即.
直線即直線過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1= ,an+1= an , n∈N*
(1)求證:數(shù)列{ }為等比數(shù)列;
(2)求數(shù)列{an}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2.
(1)證明:AG∥平面BDE;
(2)求二面角E﹣BD﹣G的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費y(萬元)有如下統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知,y對x呈線性相關(guān)關(guān)系.
(1) 請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程 ;
(2) 估計使用年限為10年時,試求維修費用約是多少?(精確到兩位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為做好2022年北京冬季奧運會的宣傳工作,組委會計劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:
愿意做志愿者工作 | 不愿意做志愿者工作 | 合計 | |
男大學(xué)生 | 610 | ||
女大學(xué)生 | 90 | ||
合計 | 800 |
(1)根據(jù)題意完成表格;
(2)是否有的把握認為愿意做志愿者工作與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線y=焦點F的直線交拋物線于A,B兩點,點C在直線y=-1上,若△ABC為正三角形,則其邊長為
A. 11 B. 13 C. 14 D. 12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐S-ABCD的底面ABCD為直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD為正三角形.
(Ⅰ)點M為棱AB上一點,若BC∥平面SDM,AM=λAB,求實數(shù)λ的值;
(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)由線面平行的性質(zhì)定理可得,據(jù)此可知四邊形BCDM為平行四邊形,據(jù)此可得.
(Ⅱ)由幾何關(guān)系,在平面內(nèi)過點作直線于點,以點E為坐標(biāo)原點,EA方向為X軸,EC方向為Y軸,ES方向為Z軸建立空間坐標(biāo)系,據(jù)此可得平面的一個法向量,平面的一個法向量,據(jù)此計算可得二面角余弦值為.
(Ⅰ)因為平面SDM, 平面ABCD,平面SDM 平面ABCD=DM,所以,
因為,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點.
因為 .
(Ⅱ)因為 , ,所以平面,又因為平面,
所以平面平面,平面平面,
在平面內(nèi)過點作直線于點,則平面,
在和中,因為,所以,
又由題知,所以所以,
以下建系求解.以點E為坐標(biāo)原點,EA方向為X軸,EC方向為Y軸,ES方向為Z軸建立如圖所示空間坐標(biāo)系,
則,,,,,
,,,,
設(shè)平面的法向量,則,所,
令得為平面的一個法向量,
同理得為平面的一個法向量,
,因為二面角為鈍角.
所以二面角余弦值為.
【點睛】
本題考查了立體幾何中的判斷定理和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴密推理,明確角的構(gòu)成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(Ⅰ)請分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關(guān)系式;
(Ⅱ)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在(,](n=1,2,3,4,5)時,日平均派送量為50+2n單.若將頻率視為概率,回答下列問題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數(shù)學(xué)期望及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由。
(參考數(shù)據(jù):0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某路段最高限速60km/h,電子監(jiān)控測得連續(xù)6輛汽車的速度用莖葉圖表示如下(單位:km/h).若從中任取2輛,則恰好有1輛汽車超速的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的單調(diào)性;
(2)若,當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com