【題目】2019213日《西安市全民閱讀促進條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習慣,提高全民閱讀能力,推動文明城市和文化強市建設(shè).某高校為了解條例發(fā)布以來全校學生的閱讀情況,隨機調(diào)查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.

1)求這200名學生每周閱讀時間的樣本平均數(shù);

2)為查找影響學生閱讀時間的因素,學校團委決定從每周閱讀時間為的學生中抽取9名參加座談會.

i)你認為9個名額應(yīng)該怎么分配?并說明理由;

ii)座談中發(fā)現(xiàn)9名學生中理工類專業(yè)的較多.請根據(jù)200名學生的調(diào)研數(shù)據(jù),填寫下面的列聯(lián)表,并判斷是否有的把握認為學生閱讀時間不足(每周閱讀時間不足8.5小時)與“是否理工類專業(yè)”有關(guān)?(精確到0.1

閱讀時間不足8.5小時

閱讀時間超過8.5小時

理工類專業(yè)

40

60

非理工類專業(yè)

附:).

臨界值表:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)9, (2)(i)每周閱讀時間為的學生中抽取3名,每周閱讀時間為的學生中抽取6名.理由見解析, (ii)有的把握認為學生閱讀時間不足與“是否理工類專業(yè)”有關(guān).

【解析】

1)取各區(qū)間中點值乘以頻率再相加即得;

2)(i)兩組差異明顯,用分層抽樣計算.(ii)求出兩組的人數(shù),填寫列聯(lián)表,計算可得.

1

2)(i)每周閱讀時間為的學生中抽取3名,每周閱讀時間為的學生中抽取6名.

理由:每周閱讀時間為與每周閱讀時間為是差異明顯的兩層,為保持樣本結(jié)構(gòu)與總體結(jié)構(gòu)的一致性,提高樣本的代表性,宜采用分層抽樣的方法抽取樣本;因為兩者頻率分別為0.1,0.2,所以按照進行名額分配

ii列聯(lián)表為:

閱讀時間不足8.5小時

閱讀時間超過8.5小時

理工類專業(yè)

40

60

非理工類專業(yè)

26

74

,

所以有的把握認為學生閱讀時間不足與“是否理工類專業(yè)”有關(guān).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某商店銷售某海鮮,統(tǒng)計了春節(jié)前后50天該海鮮的需求量,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價處理,每處理1公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1公斤可獲利30元.假設(shè)商店每天該海鮮的進貨量為14公斤,商店的日利潤為元.

(1)求商店日利潤關(guān)于需求量的函數(shù)表達式;

(2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替.

①求這50天商店銷售該海鮮日利潤的平均數(shù);

②估計日利潤在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當時,恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校2011年到2019年參加北約”“華約考試而獲得加分的學生人數(shù)(每位學生只能參加北約”“華約中的一種考試)可以通過以下表格反映出來,(為了方便計算,將2011年編號為12012年編號為2,依此類推)

年份x

1

2

3

4

5

6

7

8

9

人數(shù)y

2

3

5

4

5

7

8

10

10

1)求這九年來,該校參加北約”“華約考試而獲得加分的學生人數(shù)的平均數(shù)和方差;

2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出yx的線性回歸方程,并依此預測該校2020年參加北約”“華約考試而獲得加分的學生人數(shù).(最終結(jié)果精確至個位)

參考數(shù)據(jù):回歸直線的方程是,其中,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,點在橢圓上,點滿足以為直徑的圓過橢圓的上頂點.

1)求橢圓的方程;

2)已知直線過右焦點與橢圓交于兩點,在軸上是否存在點使得為定值?如果存在,求出點的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)經(jīng)過點,且兩個焦點,的坐標依次為.

(1)求橢圓的標準方程;

(2)設(shè),是橢圓上的兩個動點,為坐標原點,直線的斜率為,直線的斜率為,若,證明:直線與以原點為圓心的定圓相切,并寫出此定圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費用,需了解年研發(fā)費用(單位:千萬元)對年銷售量(單位:千萬件)的影響,統(tǒng)計了近10年投入的年研發(fā)費用與年銷售量 的數(shù)據(jù),得到散點圖如圖所示:

1)利用散點圖判斷,(其中為大于0的常數(shù))哪一個更適合作為年研發(fā)費用和年銷售量的回歸方程類型(只要給出判斷即可,不必說明理由).

2)對數(shù)據(jù)作出如下處理:令,得到相關(guān)統(tǒng)計量的值如下表:

根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

3)已知企業(yè)年利潤(單位:千萬元)與的關(guān)系為(其中),根據(jù)(2)的結(jié)果,要使得該企業(yè)下一年的年利潤最大,預計下一年應(yīng)投入多少研發(fā)費用?

附:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,過的直線交橢圓兩點,若的最大值為5,則b的值為( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于曲線,有如下結(jié)論:

①曲線關(guān)于原點對稱;

②曲線關(guān)于坐標軸對稱;

③曲線是封閉圖形;

④曲線不是封閉圖形,且它與圓無公共點;

⑤曲線與曲線個交點,這點構(gòu)成正方形.其中有正確結(jié)論的序號為__________

查看答案和解析>>

同步練習冊答案