【題目】在直角坐標系中,橢圓,點在橢圓上,過點作圓的切線,其切線長為橢圓的短軸長.

(Ⅰ)求橢圓的方程;

(Ⅱ)直線與橢圓的另一個交點為,點在橢圓上,且,直線軸交于.設(shè)直線,的斜率分別為,,求的值.

【答案】(Ⅰ)(Ⅱ)

【解析】

1)根據(jù)圓的切線性質(zhì),求出,將點代入橢圓方程,即可求解;

2)根據(jù)已知條件求出直線方程,與橢圓方程聯(lián)立,由韋達定理求出坐標關(guān)系,求出直線的斜率,可求出直線方程,進而求出點坐標,即可求出結(jié)論.

解:(Ⅰ)根據(jù)題目條件可知:,

解得:.又因為點在橢圓上,

所以,可得,

故橢圓的標準方程為:.

(Ⅱ)直線的斜率為,

因為,所以,

直線的直線方程為:

與橢圓的方程聯(lián)立可得:

,

.∵點的坐標為,

∴直線的直線方程為:,

則點解得

,所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為的正方形,平面平面,,的中點.

1)求證:平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學習小組在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進行研究,于是小組成員在3月份的31天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

32

38

315

322

328

溫差/

10

11

13

12

8

發(fā)芽數(shù)/

23

25

30

26

14

1)在這個學習小組中負責統(tǒng)計數(shù)據(jù)的那位同學為了減少計算量,他從這5天中去掉了32日與328日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所去掉的試驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

(參考公式:,)(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點F為拋物線C)的焦點,過點F的動直線l與拋物線C交于MN兩點,且當直線l的傾斜角為45°時,.

1)求拋物線C的方程.

2)試確定在x軸上是否存在點P,使得直線PM,PN關(guān)于x軸對稱?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于具有相同定義域D的函數(shù),若存在函數(shù)(kb為常數(shù)),對任給的正數(shù)m,存在相應(yīng)的,使得當時,總有,則稱直線為曲線分漸近線.給出定義域均為的四組函數(shù)如下:

,;

;

,;

,

其中,曲線存在分漸近線的是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若曲線在點處的切線方程為,求的值;

2)若的導函數(shù)存在兩個不相等的零點,求實數(shù)的取值范圍;

3)當時,是否存在整數(shù),使得關(guān)于的不等式恒成立?若存在,求出的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線 經(jīng)過伸縮變換后得到曲線.以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求出曲線、的參數(shù)方程;

(Ⅱ)若分別是曲線、上的動點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知,(單位:米),要求圓M分別相切于點BD,圓分別相切于點C,D

(1)若,求圓的半徑;(結(jié)果精確到0.1米)

(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當多大時,總造價最低?最低總造價是多少?(結(jié)果分別精確到0.1°和0.1千元)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:已知正方形的邊長為,沿著對角線折起,使到達的位置,且.

1)證明:平面平面

2)若的中點,點在線段上,且滿足直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

同步練習冊答案