已知函數(shù),.
(1)求函數(shù)的極值;(2)若恒成立,求實數(shù)的值;
(3)設有兩個極值點、(),求實數(shù)的取值范圍,并證明.
(1);(2);(3) 見解析。
解析試題分析:(1)先求的定義域,然后對求導,令尋找極值點,從而求出
極值;(2)構造函數(shù),又,則只需恒成立,再證在處取到最小值即可;(3)有兩個極值點等價于方程在上有兩個不等的正根,由此可得的取值范圍,,由根與系數(shù)可知及范圍為,代入上式得,利用導函數(shù)求的最小值即可。
試題解析:(1)的定義域是,.
,故當x=1時,G(x)的極小值為0.
(2)令,則,
所以,即恒成立的必要條件是,
又,由得:.
當時,由知,
故,即恒成立.
(3)由,得.
有兩個極值點、等價于方程在上有兩個不等的正根,
即:, 解得 .
由,得,其中.
所以.
設,得,
所以,即.
考點:(1)利用導求函數(shù)的極值、最值;(2)一元二方程根的分布;(3)構造函數(shù)解決與不等式有關問題。
科目:高中數(shù)學 來源: 題型:解答題
已知,函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若的最小值為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是函數(shù)的一個極值點,其中.
(1)與的關系式;
(2)求的單調(diào)區(qū)間;
(3)當時,函數(shù)的圖象上任意一點處的切線的斜率恒大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)滿足:①在時有極值;②圖像過點,且在該點處的切線與直線平行.
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若是函數(shù)的極值點,求曲線在點處的切線方程;
(2)若函數(shù)在上為單調(diào)增函數(shù),求的取值范圍;
(3)設為正實數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)().
(1)求函數(shù)的單調(diào)區(qū)間;
(2)請問,是否存在實數(shù)使上恒成立?若存在,請求實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)(為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當時,
(3)證明:對任意給定的正數(shù),總存在,使得當時,恒有
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com