【題目】《易經(jīng)》是中國(guó)傳統(tǒng)文化中的精髓,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每卦有三根線(xiàn)組成(“”表示一根陽(yáng)線(xiàn),“”表示一根陰線(xiàn)),從八卦中任取兩卦,這兩卦的六根線(xiàn)中恰有三根陽(yáng)線(xiàn)和三根陰線(xiàn)的概率__________

【答案】

【解析】

由圖可得:三根都是陽(yáng)線(xiàn)的有一卦,三根都是陰線(xiàn)的有一卦,兩根陽(yáng)線(xiàn)一根陰線(xiàn)的有三卦,兩根陰線(xiàn)一根陽(yáng)線(xiàn)的有三卦,利用組合數(shù)可得基本事件總數(shù),分類(lèi)利用計(jì)算原理求得符合要求的基本事件個(gè)數(shù)為10個(gè),問(wèn)題得解.

從八卦中任取兩卦,共有種取法

若兩卦的六根線(xiàn)中恰有三根陽(yáng)線(xiàn)和三根陰線(xiàn),可按取得卦的陽(yáng)、陰線(xiàn)的根數(shù)分類(lèi)計(jì)算;

當(dāng)有一卦陽(yáng)、陰線(xiàn)的根數(shù)為3、0時(shí),另一卦陽(yáng)、陰線(xiàn)的根數(shù)為0、3,共有種取法.

當(dāng)有一卦陽(yáng)、陰線(xiàn)的根數(shù)為2、1時(shí),另一卦陽(yáng)、陰線(xiàn)的根數(shù)為1、2,共有種取法.

所以?xún)韶缘牧(xiàn)中恰有三根陽(yáng)線(xiàn)和三根陰線(xiàn)的取法有種.

則從八卦中任取兩卦,這兩卦的六根線(xiàn)中恰有三根陽(yáng)線(xiàn)和三根陰線(xiàn)的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果經(jīng)銷(xiāo)商為了對(duì)一批剛上市水果進(jìn)行合理定價(jià),將該水果按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到一組銷(xiāo)售數(shù)據(jù),如表所示:

試銷(xiāo)單價(jià)(元/公斤)

16

17

18

19

20

日銷(xiāo)售量(公斤)

168

146

120

90

56

1)已知變量具有線(xiàn)性相關(guān)關(guān)系,求該水果日銷(xiāo)售量(公斤)關(guān)于試銷(xiāo)單價(jià)(元/公斤)的線(xiàn)性回歸方程,并據(jù)此分析銷(xiāo)售單價(jià)時(shí),日銷(xiāo)售量的變化情況;

2)若該水果進(jìn)價(jià)為每公斤元,預(yù)計(jì)在今后的銷(xiāo)售中,日銷(xiāo)售量和售價(jià)仍然服從(1)中的線(xiàn)性相關(guān)關(guān)系,該水果經(jīng)銷(xiāo)商如果想獲得最大的日銷(xiāo)售利潤(rùn),此水果的售價(jià)應(yīng)定為多少元?

(參考數(shù)據(jù)及公式:,,,線(xiàn)性回歸方程,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(-1,0),設(shè)不垂直于x軸的直線(xiàn)l與拋物線(xiàn)y2=2x交于不同的兩點(diǎn)A、B,若x軸是∠APB的角平分線(xiàn),則直線(xiàn)l一定過(guò)點(diǎn)

A. ,0) B. (1,0) C. (2,0) D. (-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,是邊長(zhǎng)為的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線(xiàn)折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn),正好形成一個(gè)正四棱柱形狀的包裝盒,上,是被切去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)().

1)某廣告商要求包裝盒的側(cè)面積最大,試問(wèn)應(yīng)取何值?

2)某廠(chǎng)商要求包裝盒的容積最大,試問(wèn)應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校社團(tuán)為調(diào)查學(xué)生課余學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖如圖所示,將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱(chēng)為“圍棋迷”.

根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷能不能在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

總計(jì)

10

55

總計(jì)

附:,其中

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小趙和小王約定在早上之間到某公交站搭乘公交車(chē)去上學(xué),已知在這段時(shí)間內(nèi),共有班公交車(chē)到達(dá)該站,到站的時(shí)間分別為,,如果他們約定見(jiàn)車(chē)就搭乘,則小趙和小王恰好能搭乘同一班公交車(chē)去上學(xué)的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車(chē)公司對(duì)最近6個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如表;

月份代碼

1

2

3

4

5

6

市場(chǎng)占有率

11

13

16

15

20

21

(1)可用線(xiàn)性回歸模型擬合之間的關(guān)系嗎?如果能,請(qǐng)求出關(guān)于的線(xiàn)性回歸方程,如果不能,請(qǐng)說(shuō)明理由;

(2)公司決定再采購(gòu)兩款車(chē)擴(kuò)大市場(chǎng), 兩款車(chē)各100輛的資料如表:

車(chē)型

報(bào)廢年限(年)

合計(jì)

成本

1

2

3

4

10

30

40

20

100

1000元/輛

15

40

35

10

100

800元/輛

平均每輛車(chē)每年可為公司帶來(lái)收入元,不考慮采購(gòu)成本之外的其他成本,假設(shè)每輛車(chē)的使用壽命部是整數(shù)年,用每輛車(chē)使用壽命的頻率作為概率,以每輛車(chē)產(chǎn)生利潤(rùn)的平均數(shù)作為決策依據(jù),應(yīng)選擇采購(gòu)哪款車(chē)型?

參考數(shù)據(jù): ,,.

參考公式:相關(guān)系數(shù);

回歸直線(xiàn)方程為,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,平面,,,,點(diǎn)在線(xiàn)段上,且,為線(xiàn)段的中點(diǎn).

(1)求證:平面;

(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

是函數(shù)的極值點(diǎn),求實(shí)數(shù)a的值;

若對(duì)任意的為自然對(duì)數(shù)的底數(shù),都有成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案