【題目】請你設(shè)計一個包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得四個點重合于圖中的點,正好形成一個正四棱柱形狀的包裝盒,在上,是被切去的一個等腰直角三角形斜邊的兩個端點,設(shè)().
(1)某廣告商要求包裝盒的側(cè)面積最大,試問應(yīng)取何值?
(2)某廠商要求包裝盒的容積最大,試問應(yīng)取何值?并求出此時包裝盒的高與底面邊長的比值.
【答案】(1)(2);高與底面邊長的比值為
【解析】
(1)設(shè)包裝盒的底面邊長為,高為,由題意得到,,,
根據(jù)側(cè)面積公式,得出,由二次函數(shù)的性質(zhì),即可得出最值;
(2)根據(jù)體積公式,由題意,得到,用導(dǎo)數(shù)的方法求出最值,即可得出結(jié)果.
(1)設(shè)包裝盒的底面邊長為,高為,
則由題意可得,,,
所以,
∴當(dāng)時,取得最大值
(2)根據(jù)題意,由(1)有
∴
由得,(舍)或.
∴當(dāng)時;當(dāng)時,
∴當(dāng)時取得極大值,也是最大值,此時包裝盒的高與底面邊長的比值為
即包裝盒的高與底面邊長的比值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋內(nèi)有大小完全相同的個黑球和個白球,從中不放回地每次任取個小球,直至取到白球后停止取球,則( )
A.抽取次后停止取球的概率為
B.停止取球時,取出的白球個數(shù)不少于黑球的概率為
C.取球次數(shù)的期望為
D.取球次數(shù)的方差為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)上的點A(4,t)到其焦點F的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點F作直線l,使得拋物線C上恰有三個點到直線1的距離為2,求直線1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研小組有20個不同的科研項目,每年至少完成一項。有下列兩種完成所有科研項目的計劃:
A計劃:第一年完成5項,從第一年開始,每年完成的項目不得少于次年,直到全部完成為止;
B計劃:第一年完成項數(shù)不限,從第一年開始,每年完成的項目不得少于次年,恰好5年完成所有項目。
那么,按照A計劃和B計劃所安排的科研項目不同完成順序的方案數(shù)量
A. 按照A計劃完成的方案數(shù)量多
B. 按照B計劃完成的方案數(shù)量多
C. 按照兩個計劃完成的方案數(shù)量一樣多
D. 無法判斷哪一種計劃的方案數(shù)量多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了改善市民的生活環(huán)境,信陽市決定對信陽市的1萬家中小型化工企業(yè)進行污染情況摸排,并出臺相應(yīng)的整治措施.通過對這些企業(yè)的排污口水質(zhì),周邊空氣質(zhì)量等的檢驗,把污染情況綜合折算成標準分100分,發(fā)現(xiàn)信陽市的這些化工企業(yè)污染情況標準分基本服從正態(tài)分布N(50,162),分值越低,說明污染越嚴重;如果分值在[50,60]內(nèi),可以認為該企業(yè)治污水平基本達標.
(1)如圖是信陽市的某工業(yè)區(qū)所有被調(diào)查的化工企業(yè)的污染情況標準分的頻率分布直方圖,請計算這個工業(yè)區(qū)被調(diào)查的化工企業(yè)的污染情況標準分的平均值,并判斷該工業(yè)區(qū)的化工企業(yè)的治污平均值水平是否基本達標;
(2)大量調(diào)査表明,如果污染企業(yè)繼續(xù)生產(chǎn),那么標準分低于18分的化工企業(yè)每月對周邊造成的直接損失約為10萬元,標準分在[18,34)內(nèi)的化工企業(yè)每月對周邊造成的直接損失約為4萬元.長沙市決定關(guān)停80%的標準分低于18分的化工企業(yè)和60%的標準分在[18,34)內(nèi)的化工企業(yè),每月可減少的直接損失約有多少?
(附:若隨機變量,則, ,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(是常數(shù),).
(1)當(dāng)時,求不等式的解集;
(2)若函數(shù)恰有兩個不同的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每卦有三根線組成(“”表示一根陽線,“”表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有三根陽線和三根陰線的概率__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)記的導(dǎo)函數(shù)為,若不等式在區(qū)間上恒成立,求的取值范圍;
(3)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若存在兩個極值點,,且滿足,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com