【題目】f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當f(x)+f(x-8)≤2時,x的取值范圍是( )
A. (8,+∞) B. (8,9] C. [8,9] D. (0,8)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用半徑為R的圓鐵皮剪一個內(nèi)接矩形,再以內(nèi)接矩形的兩邊分別作為圓柱的高與底面半徑,則圓柱的體積最大時,該圓鐵皮面積與其內(nèi)接矩形的面積比為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共14分)
如圖,在四棱錐中, 平面,底面是菱形, .
(Ⅰ)求證: 平面
(Ⅱ)若求與所成角的余弦值;
(Ⅲ)當平面與平面垂直時,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b 是函數(shù) 的兩個不同的零點,且a,b,-2 這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則p+q 的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,ex-mx=0,q:x∈R,x2-2mx+1≥0,若p∨(q)為假命題,則實數(shù)m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于區(qū)間[a,b](a<b),若函數(shù)同時滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間
(1)求函數(shù)的所有“保值”區(qū)間
(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機抽取個家庭,獲得第個家庭的月收入 (單位:千元)與月儲蓄 (單位:千元)的數(shù)據(jù)資料,算得,,,.
(1)求家庭的月儲蓄對月收入的線性回歸方程;
(2)判斷變量與之間是正相關(guān)還是負相關(guān);
(3)若該居民區(qū)某家庭月收入為千元,預(yù)測該家庭的月儲蓄.其中,為樣本平均值,線性回歸方程也可寫為,附:線性回歸方程中, ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中提到了一種名為“芻甍”的五面體(如圖):面ABCD為矩形,棱EF∥AB.若此幾何體中,AB=4,EF=2,△ADE和△BCF都是邊長為2的等邊三角形,則此幾何體的表面積為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com