【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中提到了一種名為“芻甍”的五面體(如圖):面ABCD為矩形,棱EF∥AB.若此幾何體中,AB=4,EF=2,△ADE和△BCF都是邊長為2的等邊三角形,則此幾何體的表面積為( )
A.
B.
C.
D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當(dāng)f(x)+f(x-8)≤2時(shí),x的取值范圍是( )
A. (8,+∞) B. (8,9] C. [8,9] D. (0,8)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù),x∈(0,+∞)取最小值時(shí)x的值,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題:
(1)函數(shù)(x>0)在區(qū)間(0,2)上遞減;函數(shù)在區(qū)間________上遞增.當(dāng)x=_________時(shí),_______.
(2)證明:函數(shù)(x>0)在區(qū)間(O,2)上遞減.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,坐標(biāo)分別為,,,為線段上一點(diǎn),直線與軸負(fù)半軸交于點(diǎn),直線與交于點(diǎn)。
(1)當(dāng)點(diǎn)坐標(biāo)為時(shí),求直線的方程;
(2)求與面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=2cos(2x+)的圖象向左平移個(gè)單位長度,得到函數(shù)y=f(x)的圖象.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)在[0,]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 部分圖象如圖所示.
(Ⅰ)求φ值及圖中x0的值;
(Ⅱ)在△ABC中,A,B,C的對邊分別為a,b,c,已知 ,f(C)=﹣2,sinB=2sinA,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,其中 .
(1)當(dāng) 時(shí),求函數(shù) 在 處的切線方程;
(2)若函數(shù) 在定義域上有且僅有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ ),f′(x)是f(x)的導(dǎo)函數(shù),則函數(shù)y=2f(x)+f′(x)的一個(gè)單調(diào)遞減區(qū)間是( )
A.[ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com