如圖,已知三棱柱的側(cè)棱與底面垂直,且,
,,點(diǎn)、、分別為、的中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求二面角的余弦值.

(1)詳見解析;(2)詳見解析;(3).

解析試題分析:(1)連接,利用中位線得到,然后再利用直線與平面平行的判定定理證明平面;(2)證法一是建立以點(diǎn)為原點(diǎn),以所在的直線為軸建立空間直角坐標(biāo)系,利用空間向量法證明;證法二:先證明,于是得到,于是得到,再證明平面,從而得到,最后利用直線與平面垂直的判定定理證明平面,從而得到;證法三是,得到,于是得到,再證明平面,從而得到,最后利用直線與平面垂直的判定定理證明平面,從而得到;(3)解法一是建立以點(diǎn)為原點(diǎn),以所在的直線為軸建立空間直角坐標(biāo)系利用空間向量法求二面角的余弦值;解法二是過于點(diǎn),過,連接,先利用平面,于是說明為二面角的平面角,然后在直角,然后在直角中求的值.
(1)證明:連接的中點(diǎn) ,過點(diǎn),
的中點(diǎn),,
,,平面;
(2)證法一:在直角中,,,
棱柱的側(cè)棱與底面垂直,且,以點(diǎn)為原點(diǎn),以所在的直線為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,⊥底面,四邊形是直角梯形,,,,.

(1)求證:平面⊥平面;
(2)求點(diǎn)C到平面的距離;
(3)求PC與平面PAD所成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,底面為矩形,平面,的中點(diǎn).
(1)證明://平面
(2)設(shè),三棱錐的體積,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)(2011•福建)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB.

(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱中, ,中點(diǎn),求直線與平面所成角的大小.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,側(cè)面PAD底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點(diǎn).
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求點(diǎn)A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),
.
(1)求證:
(2)若平面與平面所成的銳二面角的大小為,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB=AD,∠BAD=90°,M,N,G分別是BD,BC,AB的中點(diǎn),將等邊△BCD沿BD折疊到△BC′D的位置,使得AD⊥C′B.
(1)求證:平面GNM∥平面ADC′.
(2)求證:C′A⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱柱中,平面,.以
,為鄰邊作平行四邊形,連接

(1)求證:∥平面 ;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點(diǎn),使平面與平面垂直?若存在,求出的長;若
不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案