如圖,三棱柱中,平面,,.以
,為鄰邊作平行四邊形,連接

(1)求證:∥平面 ;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點,使平面與平面垂直?若存在,求出的長;若
不存在,說明理由.

(1)平面;(2);(3)線段上不存在點,使平面與平面垂直.

解析試題分析:(1)要證明線面平行,需要在平面中找出一條直線平行于.連結(jié),三棱柱,由平行四邊形,
, 四邊形為平行四邊形, ,平面 ,平面.(2)建立空間直角坐標(biāo)系,設(shè)平面的法向量為,利用,令,則, 直線與平面所成角的正弦值為. (3)設(shè),,則,設(shè)平面的法向量為,利用垂直關(guān)系, 即 ,令,則,所以,因為平面的法向量為,假設(shè)平面與平面垂直,則 ,解得, 
線段上不存在點,使平面與平面垂直.              
試題解析:(1)連結(jié),三棱柱,        
由平行四邊形
                               1分
四邊形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知三棱柱的側(cè)棱與底面垂直,且,
,,,點、、分別為、的中點.
(1)求證:平面;
(2)求證:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.

(1)求證DM∥平面APC;
(2)求證平面ABC⊥平面APC;
(3)若BC=PC=4,求二面角P-AB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱中,,
中點,上一點,且.
(1)當(dāng)時,求證:平面;
(2)若直線與平面所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱中, ,,的中點,△是等腰三角形,的中點,上一點.

(1)若∥平面,求;
(2)求直線和平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓錐母線長為6,底面圓半徑長為4,點是母線的中點,是底面圓的直徑,底面半徑與母線所成的角的大小等于

(1)當(dāng)時,求異面直線所成的角;
(2)當(dāng)三棱錐的體積最大時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,底面是平行四邊形,,平面,,的中點.

(1)求證:平面
(2)若以為坐標(biāo)原點,射線、分別是軸、軸、軸的正半軸,建立空間直角坐標(biāo)系,已經(jīng)計算得是平面的法向量,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點,

(1).求證:D1E⊥A1D;
(2).在線段AB上是否存在點M,使二面角D1-MC-D的大小為?,若存在,求出AM的長,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分別在線段上,B1E=3EC1,AC=BC=CC1=4.

(1)求證:BC⊥AC1;
(2)試探究:在AC上是否存在點F,滿足EF//平面A1ABB1,若存在,請指出點F的位置,并給出證明;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案