【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡(jiǎn)稱.某市為了了解人們對(duì)“一帶一路”的認(rèn)知程度,對(duì)不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識(shí)競(jìng)賽,滿分100分(90分及以上為認(rèn)知程度高).現(xiàn)從參賽者中抽取了人,按年齡分成5組,第一組: ,第二組: ,第三組: ,第四組: ,第五組: ,得到如圖所示的頻率分布直方圖,已知第一組有6人.
(1)求;
(2)求抽取的人的年齡的中位數(shù)(結(jié)果保留整數(shù));
(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個(gè)體戶 五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1~5組,從這5個(gè)按年齡分的組和5個(gè)按職業(yè)分的組中每組各選派1人參加知識(shí)競(jìng)賽,分別代表相應(yīng)組的成績(jī),年齡組中1~5組的成績(jī)分別為93,96,97,94,90,職業(yè)組中1~5組的成績(jī)分別為93,98,94,95,90.
(Ⅰ)分別求5個(gè)年齡組和5個(gè)職業(yè)組成績(jī)的平均數(shù)和方差;
(Ⅱ)以上述數(shù)據(jù)為依據(jù),評(píng)價(jià)5個(gè)年齡組和5個(gè)職業(yè)組對(duì)“一帶一路”的認(rèn)知程度.
【答案】(1)120;(2)32;(3)見解析
【解析】試題分析:(1)根據(jù)頻率分布直方圖求出第一組頻率,由此能求出;(2)設(shè)中位數(shù)為,則,由此能求出中位數(shù);(3)①利用平均數(shù)公式和方差公式能分別求出個(gè)年齡組和個(gè)職業(yè)組成績(jī)的平均數(shù)和方差;②從平均數(shù)來(lái)看兩組的認(rèn)知程度相同,從方差來(lái)看年齡組的認(rèn)知程度更好.
試題解析:(1)根據(jù)頻率分布直方圖得第一組頻率為, , .
(2)設(shè)中位數(shù)為,則, ,中位數(shù)為32.
(3)(i)5個(gè)年齡組的平均數(shù)為,方差為.5個(gè)職業(yè)組的平均數(shù)為,方差為.
(ii)評(píng)價(jià):從平均數(shù)來(lái)看兩組的認(rèn)知程度相同,從方差來(lái)看年齡組的認(rèn)知程度更好
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·深圳二模)在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店.為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個(gè)數(shù),y表示這x個(gè)分店的年收入之和.
x(個(gè)) | 2 | 3 | 4 | 5 | 6 |
y(百萬(wàn)元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程;
(2)假設(shè)該公司在A區(qū)獲得的總年利潤(rùn)z(單位:百萬(wàn)元)與x,y之間的關(guān)系為z=y-0.05x2-1.4,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤(rùn)最大?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,四邊形為正方形,點(diǎn)是的中點(diǎn),求異面直線與所成角的余弦值.
(2)如圖,在長(zhǎng)方體中,分別是的中點(diǎn),求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于四個(gè)正數(shù),如果,那么稱是的“下位序?qū)?/span>”,
(1)對(duì)于2,3,7,11,試求的“下位序?qū)?/span>”;
(2)設(shè)均為正數(shù),且是的“下位序?qū)?/span>”,試判斷之間的大小關(guān)系;
(3)設(shè)正整數(shù)滿足條件:對(duì)集合內(nèi)的每個(gè),總存在,使得是的“下位序?qū)?/span>”,且是的“下位序?qū)?/span>”,求正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)在定義域[﹣5,5]上滿足f(x)﹣f(﹣x)=0,且f(3)=0,當(dāng)x∈[0,5]時(shí),f(x)的圖象如圖所示,則不等式xf(x)<0的解集是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,且曲線與在處有相同的切線.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求證:在上恒成立;
(Ⅲ)當(dāng)時(shí),求方程在區(qū)間內(nèi)實(shí)根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com