【題目】若無窮數(shù)列滿足:是正實數(shù),當時,,則稱是“-數(shù)列”.已知數(shù)列是“-數(shù)列”.
(Ⅰ)若,寫出的所有可能值;
(Ⅱ)證明:是等差數(shù)列當且僅當單調(diào)遞減;
(Ⅲ)若存在正整數(shù),對任意正整數(shù),都有,證明:是數(shù)列的最大項.
【答案】(1)-2,0,2,8.(2)見解析(3)見解析
【解析】分析:(Ⅰ)利用遞推關系,根據(jù)分類討論思想求解即可;(Ⅱ)當是等差數(shù)列時,利用反證法可證明單調(diào)遞減,若單調(diào)遞減,當單調(diào)遞減時,對任意,.又,所以,從而是等差數(shù)列;(Ⅲ)利用反證法:假設不是數(shù)列的最大項,設是使得的最小正整數(shù),可得是的倍數(shù),但,故不是的倍數(shù),相矛盾,從而可得結論.
詳解:(Ⅰ) -2,0,2,8.
(Ⅱ)證明:因為,所以或.
當是等差數(shù)列時,假設,則.此時,,而,矛盾!所以.于是公差,所以單調(diào)遞減.
當單調(diào)遞減時,對任意,.又,所以,從而是等差數(shù)列.
(Ⅲ)證明:假設不是數(shù)列的最大項,設是使得的最小正整數(shù),則
,
因此,是的倍數(shù).
假設,,…,都是的倍數(shù),則
,
因此,也是的倍數(shù).
由第二數(shù)學歸納法可知,對任意,都是的倍數(shù).
又存在正整數(shù),對任意正整數(shù),都有,
所以,存在正整數(shù),,因而是的倍數(shù).
但,故不是的倍數(shù),矛盾!
所以,是數(shù)列的最大項.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】箱子中有形狀、大小都相同的3只紅球,2只白球,從中一次摸出2只球.
(1)求摸到的2只球顏色不同的概率:
(2)求摸到的2只球中至少有1只紅球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}滿足.
(1)若,求證:存在(a,b,c為常數(shù)),使數(shù)列是等比數(shù)列,并求出數(shù)列{an}的通項公式;
(2)若an 是一個等差數(shù)列{bn}的前n項和,求首項a1的值與數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的個數(shù)為( )
①兩個有共同始點且相等的向量,其終點可能不同;
②若非零向量與共線,則、、、四點共線;
③若非零向量與共線,則;
④四邊形是平行四邊形,則必有;
⑤,則、方向相同或相反.
A.個B.個C.個D.個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次“漢馬”(武漢馬拉松比賽的簡稱)全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(單位:分鐘)分別為數(shù)據(jù) (成績不為0).
(Ⅰ)24名男選手成績的莖葉圖如圖⑴所示,若將男選手成績由好到差編為1~24號,再用系統(tǒng)抽樣方法從中抽取6人,求其中成績在區(qū)間上的選手人數(shù);
(Ⅱ)如圖⑵所示的程序用來對這50名選手的成績進行統(tǒng)計.為了便于區(qū)別性別,輸入時,男選手的成績數(shù)據(jù)用正數(shù),女選手的成績數(shù)據(jù)用其相反數(shù)(負數(shù)),請完成圖⑵中空白的判斷框①處的填寫,并說明輸出數(shù)值和的統(tǒng)計意義.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com