【題目】方程為x2+y2﹣4x﹣2y+4=0.以O為極點,x軸正半軸為極軸建立極坐標系.
(1)求l的普通方程與C的極坐標方程;
(2)已知l與C交于P,Q,求|PQ|.

【答案】
(1)解:圓C的方程為x2+y2﹣4x﹣2y+4=0.

曲線C的標準方程為(x﹣2)2+(y﹣1)2=1.

把x=ρcosθ,y=ρsinθ代入,化簡得:曲線C的極坐標方程為:ρ2﹣4ρcosθ﹣2sinθ+4=0


(2)解:將直線l的參數(shù)方程 (t為參數(shù)),代入曲線C的方程,得t2﹣3 t+4=0,

t1+t2=3 ,t1t2=4,

∴|PQ|=|t1﹣t2|= = =


【解析】(1)圓C的方程為x2+y2﹣4x﹣2y+4=0.曲線C的標準方程為(x﹣2)2+(y﹣1)2=1.把x=ρcosθ,y=ρsinθ代入,化簡得:曲線C的極坐標方程.(2)將直線l的參數(shù)方程 (t為參數(shù)),代入曲線C的方程,得t2﹣3 t+4=0,利用|PQ|=|t1﹣t2|= 即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)國務院批復同意,鄭州成功入圍國家中心城市,某校學生團針對“鄭州的發(fā)展環(huán)境”對20名學生進行問卷調(diào)查打分(滿分100分),得到如圖1所示莖葉圖.
(Ⅰ)分別計算男生女生打分的平均分,并用數(shù)學特征評價男女生打分的數(shù)據(jù)分布情況;
(Ⅱ)如圖2按照打分區(qū)間[0,60)、[60,70)、[70,80)、[80,90)、[90,100]繪制的直方圖中,求最高矩形的高;
(Ⅲ)從打分在70分以下(不含70分)的同學中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=aex﹣blnx,曲線y=f(x)在點(1,f(1))處的切線方程為
(1)求a,b;
(2)證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在五面體ABCDEF中,面CDE和面ABF都為等邊三角形,面ABCD是等腰梯形,點P、Q分別是CD、AB的中點,F(xiàn)Q∥EP,PF=PQ,AB=2CD=2.
(1)求證:平面ABF⊥平面PQFE;
(2)若PQ與平面ABF所成的角為 ,求三棱錐P﹣QDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)作出函數(shù)y=f(x)在一個周期內(nèi)的圖象,并寫出其單調(diào)遞減區(qū)間;
(2)當 時,求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),圓C的方程為x2+y2﹣4x﹣2y+4=0.以O為極點,x軸正半軸為極軸建立極坐標系.
(1)求l的普通方程與C的極坐標方程;
(2)已知l與C交于P,Q,求|PQ|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) . (Ⅰ)求f(x)的定義域;
(Ⅱ)設β是銳角,且 ,求β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,PC⊥平面ABCD,點E在棱PA上.
(Ⅰ)求證:直線BD⊥平面PAC;
(Ⅱ)若PC∥平面BDE,求證:AE=EP;
(Ⅲ)是否存在點E,使得四面體A﹣BDE的體積等于四面體P﹣BDC的體積的 ?若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要想得到函數(shù) 的圖象,只需將函數(shù)y=sinx的圖象上所有的點( )
A.先向右平移 個單位長度,再將橫坐標伸長為原來的2倍,縱坐標不變
B.先向右平移 個單位長度,橫坐標縮短為原來的 倍,縱坐標不變
C.橫坐標縮短為原來的 倍,縱坐標不變,再向右平移 個單位長度
D.橫坐標變伸長原來的2倍,縱坐標不變,再向右平移 個單位長度

查看答案和解析>>

同步練習冊答案