【題目】已知函數(shù),其中e是自然對數(shù)的底數(shù)
(1)若,求的最小值;
(2)記f(x)的圖象在處的切線的縱截距為,求的極值;
(3)若有2個零點,求證:.
【答案】(1)2(2)極大值1,無極小值.(3)見解析
【解析】
(1)利用基本不等式求解即可.
(2)利用導(dǎo)數(shù)的幾何意義可得的圖象在處的切線方程,進而求得截距,再求導(dǎo)分析單調(diào)性與極值即可.
(3)討論單調(diào)性可得,再設(shè),再根據(jù)零點可知,,繼而化簡可得,.將原不等式轉(zhuǎn)換為證明,再構(gòu)造函數(shù)求導(dǎo)分析單調(diào)性與最小值證明即可.
(1)因為,
當且僅當時等號成立,所以的最小值為2.
(2)因為,所以.
因為,
所以的圖象在處的切線方程為
.
令,得,
所以,
所以當時,,故單調(diào)遞增;
當時,.故單調(diào)遞減.
所以當時,h(t)取到極大值,為1,無極小值.
(3)因為,
所以當時,,故單調(diào)遞增,
所以至多有1個零點,故.
因為,
所以,故.
因為,所以.
設(shè).
因為,,
兩式相除得,
所以,
解得,.
要證,
即證,
即證,
即證.
設(shè),
則
故單調(diào)遞增,
所以,
因此原命題得證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)(是自然對數(shù)的底數(shù))恰有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了打擊海盜犯罪,甲、乙、丙三國海軍進行聯(lián)合軍事演習(xí),分別派出一艘軍艦A,B,C.演習(xí)要求:任何時刻軍艦A、B、C均不得在同一條直線上.
(1)如圖1,若演習(xí)過程中,A、B間的距離始終保持,B,C間的距離始終保持,求的最大值.
(2)如圖2,若演習(xí)過程中,A,C間的距離始終保持,B、C間的距離始終保持.且當變化時,模擬海盜船D始終保持:到B的距離與A、B間的距離相等,,與C在直線AB的兩側(cè),求C與D間的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,如果方程有兩個不等實根,求實數(shù)t的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,且.
(1)求數(shù)列的通項公式;
(2)若數(shù)列的前項和為,且,,數(shù)列的前項和為,求滿足的所有正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】極坐標系中橢圓C的方程為,以極點為原點,極軸為軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(Ⅰ)求該橢圓的直角標方程,若橢圓上任一點坐標為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦,交于點,且直線與的傾斜角互補,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列的前n項和,,,是數(shù)列的前n項和,.
(1)求數(shù)列和的通項公式;
(2)設(shè),數(shù)列的前n項和為,若只存在2個正整數(shù)n滿足,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】筆、墨、紙、硯是中國獨有的文書工具,即“文房四寶”.筆、墨、紙、硯之名,起源于南北朝時期,其中的“紙”指的是宣紙,宣紙“始于唐代,產(chǎn)于涇縣”,而唐代涇縣隸屬于宣州府管轄,故因地而得名“宣紙”,宣紙按質(zhì)量等級,可分為正牌和副牌(優(yōu)等品和合格品),某公司年產(chǎn)宣紙10000刀(每刀100張),公司按照某種質(zhì)量標準值給宣紙確定質(zhì)量等級,如下表所示:
公式在所生產(chǎn)的宣紙中隨機抽取了一刀(100張)進行檢驗,得到頻率分布直方圖如圖所示,已知每張正牌紙的利潤是10元,副牌紙的利潤是5元,廢品虧損10元.
(1)估計該公式生產(chǎn)宣紙的年利潤(單位:萬元);
(2)該公司預(yù)備購買一種售價為100萬元的機器改進生產(chǎn)工藝,這種機器的使用壽命是一年,只能提高宣紙的質(zhì)量,不影響產(chǎn)量,這種機器生產(chǎn)的宣紙的質(zhì)量標準值的頻率,如下表所示:
其中為改進工藝前質(zhì)量標準值的平均值,改進工藝后,每張正牌和副牌宣紙的利潤都下降2元,請判斷該公司是否應(yīng)該購買這種機器,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com