【題目】筆、墨、紙、硯是中國獨有的文書工具,即文房四寶”.筆、墨、紙、硯之名,起源于南北朝時期,其中的指的是宣紙,宣紙始于唐代,產(chǎn)于涇縣,而唐代涇縣隸屬于宣州府管轄,故因地而得名宣紙,宣紙按質(zhì)量等級,可分為正牌和副牌(優(yōu)等品和合格品),某公司年產(chǎn)宣紙10000刀(每刀100張),公司按照某種質(zhì)量標(biāo)準值給宣紙確定質(zhì)量等級,如下表所示:

公式在所生產(chǎn)的宣紙中隨機抽取了一刀(100張)進行檢驗,得到頻率分布直方圖如圖所示,已知每張正牌紙的利潤是10元,副牌紙的利潤是5元,廢品虧損10.

1)估計該公式生產(chǎn)宣紙的年利潤(單位:萬元);

2)該公司預(yù)備購買一種售價為100萬元的機器改進生產(chǎn)工藝,這種機器的使用壽命是一年,只能提高宣紙的質(zhì)量,不影響產(chǎn)量,這種機器生產(chǎn)的宣紙的質(zhì)量標(biāo)準值的頻率,如下表所示:

其中為改進工藝前質(zhì)量標(biāo)準值的平均值,改進工藝后,每張正牌和副牌宣紙的利潤都下降2元,請判斷該公司是否應(yīng)該購買這種機器,并說明理由.

【答案】1400萬元;(2)應(yīng)該購買,理由見解析

【解析】

1)由頻率分布直方圖求得張宣紙中各類宣紙的數(shù)量,結(jié)合每種宣紙的盈虧即可容易求得結(jié)果;

2)由頻率分布直方圖求得,即可求得各區(qū)間的頻率分布,據(jù)此即可求得結(jié)果.

1)由頻率分布直方圖可知,一刀(100張)宣紙中有正牌宣紙100×0.1×4=40張,

有副牌宣紙100×0.05×4×2=40張,

有廢品100×0.025×4×2=20張,

所以該公司一刀宣紙的年利潤為40×10+40×5+20×-10=400元,

所以估計該公式生產(chǎn)宣紙的年利潤為400萬元;

(2) 由頻率分布直方圖可得

這種機器生產(chǎn)的宣紙質(zhì)量指標(biāo)的頻率如下表所示:

則一刀宣紙中正牌的張數(shù)為100×0.6826=68.26張,

副牌的張數(shù)約為100×0.95440.6826=27.18張,

廢品的張數(shù)約為100×10.9544=4.56張,

估計一刀宣紙的利潤為:68.26×102+27.18×52+4.56×9(-10=582.02

因此改進工藝后生產(chǎn)宣紙的利潤為582.02100=482.02元,

因為482.02>400,所以該公式應(yīng)該購買這種設(shè)備.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中e是自然對數(shù)的底數(shù)

1)若,求的最小值;

2)記fx)的圖象在處的切線的縱截距為,求的極值;

3)若2個零點,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在多邊形中,四邊形為等腰梯形,,,四邊形為直角梯形,.以為折痕把等腰梯形折起,使得平面平面,如圖2所示.

1)證明:平面

2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,短軸的一個端點到右焦點的距離為2

1)求橢圓的方程;

2)設(shè)分別為橢圓的左、右頂點,如圖,過點分別作直線,設(shè)直線交橢圓于另一點交橢圓于另一點,分別過作橢圓的兩條切線,且兩條切線交于點,分別過作橢圓的兩條切線,且兩條切線交于點.證明:點在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱中,分別是 的中點,,為棱上的點.

(1)證明:

(2)是否存在一點,使得平面與平面所成銳二面角的余弦值為?若存在,說明點的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM25是衡量空氣質(zhì)量的重要指標(biāo),我國采用世衛(wèi)組織的最寬值限定值,即PM25日均值在以下空氣質(zhì)量為一級,在空氣質(zhì)量為二級,超過為超標(biāo),如圖是某地11日至10日的PM25(單位:)的日均值,則下列說法正確的是(

A.10天中PM25日均值最低的是13

B.1日到6PM25日均值逐漸升高

C.10天中恰有5天空氣質(zhì)量不超標(biāo)

D.10天中PM25日均值的中位數(shù)是43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時,求零點處的切線方程;

(Ⅱ)若有兩個零點,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為:為參數(shù),已知直線,直線以坐標(biāo)原點為極點,x軸正半軸為極軸,建立極坐標(biāo)系.

1)求曲線C以及直線的極坐標(biāo)方程;

2)若直線與曲線C分別交于OA兩點,直線與曲線C分別交于OB兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,是橢圓上一點.

1)求橢圓的方程;

2)若直線的斜率為,且直線交橢圓兩點,點關(guān)于原點的對稱點為,點是橢圓上一點,判斷直線的斜率之和是否為定值,如果是,請求出此定值,如果不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案