【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求零點(diǎn)處的切線方程;
(Ⅱ)若有兩個(gè)零點(diǎn),求證:.
【答案】(Ⅰ)或(Ⅱ)見解析
【解析】
(I)先把代入得到,根據(jù)零點(diǎn)存在性原理判斷函數(shù)的零點(diǎn)坐標(biāo)原點(diǎn)和,代入求出切線斜率即可求出切線方程;
(II)先構(gòu)造一個(gè)函數(shù),利用這個(gè)函數(shù)可得到,從而有,再構(gòu)造,得到,有,再根據(jù)即可證明.
解:(Ⅰ)由題意得:,,定義域?yàn)?/span>,
,
,在上為減函數(shù).
,
由零點(diǎn)存在定理可知,在上必存在一點(diǎn)使
當(dāng)時(shí),,即在上為增函數(shù),
當(dāng)時(shí),,即在上為減函數(shù),
極大值,
故至多有兩個(gè)零點(diǎn),又,,
故,是的兩個(gè)零點(diǎn),由,,
易得出兩切線方程為:或
(Ⅱ)由(Ⅰ)易知,
設(shè),
,,
在上為增函數(shù),
當(dāng)時(shí),,即在上為減函數(shù),
當(dāng)時(shí),,即在上為增函數(shù),
,即,
設(shè)與的交點(diǎn)橫坐標(biāo)為,
,
為增函數(shù),,
同理設(shè),
,,
在上為增函數(shù),,
當(dāng)時(shí),,即在上為增函數(shù),
當(dāng)時(shí),,即在上為減函數(shù),
,即,
設(shè)與的交點(diǎn)橫坐標(biāo)為,
,
為減函數(shù),,
故:,
得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】極坐標(biāo)系中橢圓C的方程為,以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長度.
(Ⅰ)求該橢圓的直角標(biāo)方程,若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦,交于點(diǎn),且直線與的傾斜角互補(bǔ),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級在開學(xué)時(shí)舉行了入學(xué)檢測.為了了解本年級學(xué)生寒假期間歷史的學(xué)習(xí)情況,現(xiàn)從年級名文科生中隨機(jī)抽取了名學(xué)生本次考試的歷史成績,得到他們歷史分?jǐn)?shù)的頻率分布直方圖如圖.已知本次考試高三年級歷史成績分布區(qū)間為.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這名學(xué)生歷史成績的平均分,眾數(shù);(每組數(shù)據(jù)用該組的區(qū)間中點(diǎn)值作代表)
(3)已知該學(xué)校每年高考有%的同學(xué)歷史成績在一本線以上,用樣本估計(jì)總體的方法,請你估計(jì)本次入學(xué)檢測歷史學(xué)科劃定的一本線該為多少分?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】筆、墨、紙、硯是中國獨(dú)有的文書工具,即“文房四寶”.筆、墨、紙、硯之名,起源于南北朝時(shí)期,其中的“紙”指的是宣紙,宣紙“始于唐代,產(chǎn)于涇縣”,而唐代涇縣隸屬于宣州府管轄,故因地而得名“宣紙”,宣紙按質(zhì)量等級,可分為正牌和副牌(優(yōu)等品和合格品),某公司年產(chǎn)宣紙10000刀(每刀100張),公司按照某種質(zhì)量標(biāo)準(zhǔn)值給宣紙確定質(zhì)量等級,如下表所示:
公式在所生產(chǎn)的宣紙中隨機(jī)抽取了一刀(100張)進(jìn)行檢驗(yàn),得到頻率分布直方圖如圖所示,已知每張正牌紙的利潤是10元,副牌紙的利潤是5元,廢品虧損10元.
(1)估計(jì)該公式生產(chǎn)宣紙的年利潤(單位:萬元);
(2)該公司預(yù)備購買一種售價(jià)為100萬元的機(jī)器改進(jìn)生產(chǎn)工藝,這種機(jī)器的使用壽命是一年,只能提高宣紙的質(zhì)量,不影響產(chǎn)量,這種機(jī)器生產(chǎn)的宣紙的質(zhì)量標(biāo)準(zhǔn)值的頻率,如下表所示:
其中為改進(jìn)工藝前質(zhì)量標(biāo)準(zhǔn)值的平均值,改進(jìn)工藝后,每張正牌和副牌宣紙的利潤都下降2元,請判斷該公司是否應(yīng)該購買這種機(jī)器,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知點(diǎn),,動點(diǎn)滿足直線與的斜率之積為.記的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求和的直角坐標(biāo)方程;
(2)求上的點(diǎn)到距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著“一帶一路”倡議的推進(jìn),中國與沿線國家旅游合作越來越密切,中國到“一帶一路”沿線國家的游客人也越來越多,如圖是2013-2018年中國到“一帶一路”沿線國家的游客人次情況,則下列說法正確的是( )
①2013-2018年中國到“一帶一路”沿線國家的游客人次逐年增加
②2013-2018年這6年中,2014年中國到“一帶一路”沿線國家的游客人次增幅最小
③2016-2018年這3年中,中國到“一帶一路”沿線國家的游客人次每年的增幅基本持平
A.①②③B.②③C.①②D.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,且Sn+2=2an,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn,設(shè)數(shù)列{bn}的前項(xiàng)和為Tn,若Tn,求n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).
(1)若過點(diǎn),且,求的斜率;
(2)若,且的斜率為,當(dāng)時(shí),求在軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com