已知ab為常數(shù),且a≠0,函數(shù)f(x)=-axb
axln xf(e)=2.
①求b;②求函數(shù)f(x)的單調(diào)區(qū)間.

b=2②a>0時,f(x)的增區(qū)間為(1,+∞),減區(qū)間為(0,1);
a<0時,f(x)的增區(qū)間為(0,1),減區(qū)間為(1,+∞).

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線y=x3,求曲線過點P(2,4)的切線方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=aln x+x+1,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

請你設(shè)計一個包裝盒,如圖所示,ABCD是邊長為60 cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得AB,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,EFAB上,是被切去的一個等腰直角三角形,斜邊的兩個端點,設(shè)AEFBx(cm).

①某廣告商要求包裝盒的側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
②某廠商要求包裝盒的容積V(cm3)最大,試問x應(yīng)取何值?并求出此時包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=2x3ax2bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)yf′(x)
的圖象關(guān)于直線x=-對稱,且f′(1)=0.
①求實數(shù)a,b的值;②求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過曲線y=ex上的點P(1,e)且與曲線在該點處的切線垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(e為自然對數(shù)的底數(shù))
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),存在實數(shù),使得成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=ln(x2+1),g(x)=x2.
(1)求F(x)=f(x)-g(x)的單調(diào)區(qū)間,并證明對[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)將y=f(x)的圖像向下平移a(a>0)個單位,同時將y=g(x)的圖像向上平移b(b>0)個單位,使它們恰有四個交點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案